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Purpose

The purpose of this study is to present a simplified methodology for determining the optimal

placement of piezoelectric patches on flexible plate-type structures, aimed at enhancing active

vibration control efficiency.

Methods

The methodology utilizes the displacement eigenfunction to identify points of maximum strain,

minimizing computational complexity. A Genetic Algorithm (GA) is applied to optimize patch

placement by using strain distribution as the objective function. The study focuses on a pinned

support rectangular plate, analyzing its strain profile to identify optimal locations for multiple

piezoelectric patches. These identified locations are further validated using controllability and

observability considerations.

Results

The results demonstrate that the proposed methodology effectively pinpoints optimal patch

positions based on the plate's specific x and y coordinates, significantly improving vibration

control performance across multiple modes.

Conclusion

The research provides a practical and efficient approach for optimizing piezoelectric patch

placement, contributing to active vibration control technology advancements for flexible plate-

type structures.

Abstract

Effective active vibration control of flexible plate-type structures relies heavily on the optimal

placement of piezoelectric actuators and sensors. This paper presents a simplified and control-

independent methodology for determining optimal patch locations to maximize control

efficiency. The approach employs displacement eigenfunctions to identify regions of maximum

strain, which serve as the objective function in a Genetic Algorithm (GA)-based optimization

framework. A rectangular plate with pinned supports is considered as a case study, where

multimode strain profiles are analyzed to establish the most effective patch locations. To ensure

reliability, the GA-derived results are validated against controllability and observability

indices. The findings demonstrate that identifying specific x—y coordinates of patch centers

significantly improves vibration suppression performance. The proposed methodology reduces

computational complexity, ensures accurate placement of actuators and sensors, and offers a

practical framework for advancing active vibration control in flexible plate-type structures.
Keywords: Active vibration control, optimal placement, flexible structure, genetic algorithm,

optimal control.

1. Introduction

Recent advancements in space structures, aircraft, and robotic manipulators have driven the
need for lightweight, flexible designs with low modal frequencies and damping ratios.
However, these structures often suffer from higher flexibility, reduced damping, and prolonged
vibration suppression times compared to rigid structures [1]. The findings highlight the
importance of actively controlling vibration in large space structures, where precise control is
critical. Smart structures featuring optimized actuator and sensor placements are essential for
addressing these challenges. Researchers typically divide control methods into active and
passive categories based on the disturbance frequency. Active methods address disturbances
below 1000 Hz, while passive methods manage those above 1000 Hz. Active control is often
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preferred for its effectiveness across varying conditions. Traditionally, passive isolators and
dampers, such as rubber mountings and passive dampers, were used to manage mechanical
vibrations [2]. Active vibration control has regained popularity due to developments in digital
signal processing (DSP) and sensors and actuators. A typical smart structure incorporates
sensors to track dynamic behavior, a processor to analyze the data, actuators to carry out the
control actions, and a power source to drive the system. The field has gained significant interest
due to advancements in space exploration, rapid processors, responsive operating systems, and
high-performance sensors and actuators [3, 4]. Optimal active vibration control involves
analyzing vibrational properties, identifying ideal sensor and actuator locations, and designing
an efficient control system. Researchers have extensively studied placement techniques using
the linear quadratic regulator (LQR) to control composite shells with bonded piezoelectric
patches [5].

Piezoelectric materials, valued for their rapid response, flexibility, lightweight, and low power
use, are key in active vibration control (AVC). These materials convert electrical signals to
mechanical strains and vice versa, making them ideal for sensing and actuation. Piezoelectric
materials are used as layers, bonded patches, cylindrical stacks, screen-printed layers, fiber
composites, and graded material patches. Piezoelectric patches that are implanted or surface-
mounted give precise control over structural reactions [6-11]. Effective structural vibration
control requires careful consideration of the number and positioning of piezoelectric sensors
and actuators. Significant research has focused on designing and placing these components to
enhance the control of flexible structures, ensuring maximum performance in vibration
suppression [12]. Misplacement of sensors and actuators can result in issues such as reduced
observability and controllability and unwanted spillover-effects [13]. The efficiency of energy
harvesting and vibration damping is highly dependent on the strategic placement of transducers
within a structure. Consequently, many studies emphasize optimizing this placement to
improve performance. Determining the optimal. location for piezoelectric patches in smart
structures is crucial for the effective operation of ‘active control systems, attracting interest
across research disciplines.

To achieve effective control, strategically place-actuators at locations with higher strain in both
the time and frequency domains. Optimal active vibration control involves calculating
vibrations, placing sensors and actuators, and designing the control system. Many researchers
have tackled the challenge of determining optimal sensor and actuator placement. The linear
quadratic regulator (LQR) method was utilized for active vibration control of laminated
composite shells integrated with bonded piezoelectric patches. Other studies have optimized
performance indices using H2 norms [14] and Hoo norms for sensor and actuator positions.
Linear quadratic Gaussian (LQG) schemes have optimized sensor and actuator placement,
while controllability and observability grammian methods have been used for optimal
placement [13].

Han and Lee [15] examined sensor and actuator placement for controllability, observability,
and spillover prevention using controllability grammian indices. Dhuri and Seshu [16] focused
on maximizing controllability and observability measures for active piezoelectric damping.
Kumar and Narayanan [17] explored the use of linear quadratic regulator (LQR) controllers to
optimize the placement of piezoelectric patches on beam structures. Fein and Gaul [18] applied
analytical strain energy methods to improve the positioning of piezoelectric sensors on 2D
plates. Halim and Moheimani [19] proposed an optimization method based on modal and
spatial controllability measures for thin plates. Similarly, Lin et al. [20] employed the maximal
modal force rule to identify the optimal placement of actuators. Main et al. [21] investigated
the effects of piezoelectric patch sizes and locations based on stiffness ratios between
piezoceramic materials and substrate structures. Gupta et al. [22] reviewed optimal placement
strategies, considering criteria such as modal forces, deflection, control effort, controllability,
observability, and spillover minimization. Controllability, observability, energy dissipation,
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and system stability are key optimization objectives in placing piezoelectric sensors and
actuators.

Several studies have emphasized the application of genetic algorithms to determine optimal
configurations for piezoelectric systems [15, 23-24]. These algorithms excel at handling non-
convex search spaces involving both continuous and discrete optimization variables within
multi-objective frameworks. Mehrabian and Yousefi-Koma [25] utilized bio-inspired
approaches, incorporating finite element analysis and neural networks, to determine optimal
configurations for piezo actuators. Xu and Jiang [26] utilized genetic algorithms to optimize
the placement of piezoelectric elements within truss structures.

Plates play a vital role as structural elements in modern construction, as well as in aerospace
and aeronautical engineering. Various models for plate analysis based on different theories are
investigated in the literature. Kirchhoff plate theory is typically employed for the dynamic
modeling thin plates, while Mindlin plate theory is utilized for thick plates. Gao et al. [27]
studied the vibration and acoustic behavior of a supported thin plate, focusing on harmonic
point forces or incident plane waves as primary noise sources. They also explored the use of
piezoelectric patches for sound level control. Caruso et al. [28] investigated vibration control
in an elastic plate clamped along one edge, focusing on its response to an impulsive transverse
force applied at a free corner. Lam et al. [29] proposed a finite element model incorporating
piezoelectric sensors and actuators for active vibration control, further validated using a
cantilever composite plate. Narayanan and Balamurugan [30] developed a finite element
approach for modeling laminated structures with-integrated piezoelectric layers, accounting for
the effects of stiffness, mass, and-electromechanical coupling in the piezoelectric laminates.
Tzou and Fu [31] developed dynamic models to analyze the vibration response of supported
elastic rectangular plates with variablerectangular piezoelectric patches. In flexible structures,
mapping physical displacements onto a modal basis enables independent monitoring and
control of each mode through individual sensors and actuators. Daraji et al.[32] identified
optimal patch positions on cantilever-plate structures by measuring sensor effectiveness as a
percentage. The methodology involved normalizingeach sensor's output voltage by dividing it
by the maximum output for each mode, utilizing both time and frequency domain analyses.
This approach was applied to dynamically symmetric and asymmetric structures under external
forces and base excitations. The approach optimized sensor and actuator distribution using time
and frequency response analysis, comparing results with published findings for cantilever
plates.

The provided literature review highlights the challenges associated with existing
methodologies for optimizing the placement of piezoelectric patches on structures for vibration
control. These approaches are time-consuming and computationally complex due to the tedious
math and high cost of handling many elements. Mode shapes are inherent to structures, with
displacement patterns remaining consistent for each mode, while the magnitude varies with
different modal displacements. The strain profile follows the displacement eigenfunction of the
mode shape, and regions of maximum strain are the most effective areas for piezoelectric patch
placement. The displacement eigenfunction of the structure’s mode shapes can be
differentiated to determine the regions of maximum strain. Since these strain regions do not
change for a given mode shape, they provide an efficient means of identifying the optimal
locations for piezoelectric patches.

The proposed hypothesis suggests a simplified approach for identifying optimal piezoelectric
patch locations by leveraging the displacement eigenfunction for a plate-type structure. This
methodology assumes that maximum strain regions, which are crucial for effective vibration
control, can be determined by analyzing the displacement eigenfunction. The steps in this
approach would include:

Utilizing Displacement Eigenfunction: The displacement eigenfunction of a mode shape is a
reliable indicator of strain patterns. By differentiating the eigenfunction, regions of maximum
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strain can be pinpointed.
1. Objective Function Based on Kirchhoff Plate Theory: For thin plates with small
deflections, Kirchhoff plate theory will derive an objective function that accurately
describes the strain distribution across the plate.
2. Simplification of Mathematical Formulations: The new methodology reduces
mathematical complexity by focusing on strain regions derived from displacement
eigenfunctions.
3. Efficiency in Computation: This methodology avoids full-scale optimization of actuator
positions, making it more computationally efficient. It is particularly suited for systems with
many degrees of freedom.
The study presents an efficient solution for optimal piezoelectric patch placement using strain
distribution from mode shapes and displacement eigenfunctions. This method simplifies the
optimization process, making it well-suited for complex structures with numerous
degrees of freedom. The proposed approach is validated by comparing its accuracy and
computational efficiency with other existing methods, highlighting its effectiveness for
real-world applications.
2. Methodology
The placement of actuators and sensors plays a crucial role in effectively controlling vibrations in plate-
type structures. Piezoelectric patches (piezopatches) are widely used as actuators and sensors in
aerospace, automotive, and civil engineering for their compact actuation and sensing capabilities.
Determining the optimal placement of piezopatches is complex and computationally intensive,
particularly for large structures with dynamic behavior.
This study aims to develop a simplified methodology for the eptimal placement of piezo patches in
plate-type structures. The proposed approach focuses-on/identifying the ideal locations by targeting
points of maximum strain, which is critical for effective vibration control. The methodology uses
displacement eigenfunctions to reduce computational time jand complexity while ensuring optimal
piezopatch placement for maximum effectiveness. The streamlined process proposed in this study offers
a practical solution for engineers and researchers-working/on vibration control in plate-type structures.
The proposed methodology improves the efficiency of the design process while ensuring that the
placement of actuators and sensors achieves-optimal performance in vibration suppression. The
flowchart in Figure 1 illustrates the algorithm used to accomplish this.

Mathematical modeling of flexible structure (Plate with all sides
are simply supported)
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Fig. 1 Flow chart of the proposed methodology
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2.1 Modeling of the Flexible Plate Structure:

The section focuses on developing dynamic models for a flexible plate structure where all sides
are pinned and supported. The Kirchhoff plate theory derives the dynamic model, which applies
to thin plates with small deflections. The assumption of small deflections allows the use of a
small angle approximation, significantly simplifying the derivation process and enabling the
linearization of the equations of motion. Several key assumptions are made in the modeling
process to ensure the validity of the derived equations [33].

1.The plate is of uniform thickness.

2. Shear deformation, lateral stress, and rotational inertia are neglected.

The plate under study is a thin structure with dimensions a X b X h, where its behavior is
defined by material properties such as Young's modulus (E), density (p), and Poisson's ratio
(v). The coordinate system is aligned with the plate's mid-plane, referred to as the neutral
surface, where longitudinal bending strain is absent. A diagram of this plate element is shown
in Figure 2.

(a) (b)
Fig. 2 (a) Thin plate in transverse vibration, (b) small element of the plate [33]
The deflection along the X and Y axes can be described

u=—z2¥
— ox '
v g @
=75
Where w is deflection in z direction. The strains can be derived from Eq. (1) using Hooke's
Law.
X 9x ax2 '’
av ’w
& =5,= %5z ,and (2)
du  Ov %w
=S4T gy Y
ny dy + 0x 0x dy

Where yyy represents the shear strain, while €, and €, denote the longitudinal strains in X and
Y directions respectively. According Hooke's Law, these strains are related to stresses as

follows:
€x = %(GX — ch),
€y = %(cy —voy),and (3)
Yxy = é Txy = 2 “—;V) Txy-

The shear modulus G is related to Young's modulus as expressed above. The shear stress is
represented by Ty, while yy and yy, correspond to longitudinal stresses in the X and Y directions

respectively. Consequently, the stresses can be derived from Eq. (2) and (3).

Ez (OZW_I_V azw)
(1-v2) \9x2 ay2 )’

Ox =

(4)
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Ez %w %w
oy = G (a_yz +v . 2) and
__ Ez 9w
Txy = (1-v) dxady
The moment per unit length, My , is determined by integrating the allied stress across the
thickness of the plate,
h
M, = J? Zh Z 0y dz
. (5)
= —D( tv F)
In this case, D denotes the flexural rigidity of the plate.
_ Eh3 6
T 12(1-v2Y (6)
Similarly, for My,
h
= 2h z oy dz
2 (7)
*w 9?
b (a—yz +v 55)
The torsional moment per unit length Myy,
h
M (2 2 Ty dz
=z N 8)
w
=-D(1-v) Ixdy

Where dM,x and dM,y, represent the external moments per unit length, and p, represents the
pressure in the Z direction. As illustrated in Fig. 2, Qx and Qy indicate for the shearing forces
per unit length. By considering the vertical forces in the Z direction and applying Newton’s
second law,

Qudy — (Q + %2 dx) dy + Qe — (Qy + 5% dy) dx+

*w )
p, (t,x,y) dxdy — p (x,y) hdx dy o7 = 0.
Dividing by dx dy yields:
2Q, 9Q
~ 2 P p, (%)~ pky) h S =0, (10)

Taking the moment equilibrium about the X-axis and neglecting the plate's rotational inertia,
(txy) dxdy2 — 2= axdy? — (Q, + 2 dy) dxdy - Z* dydx—
pZ 4 ’y y 2 Ix y 2 y ay y y ay y

11)
i, 3 (
T dXdy—dede— 0.
Dividing by dx dy and ignoring the higher order term dy,
B oMy,  0Myy,  OMpy
Qy ay t ax + ay (12)
In the same way, the moment equilibrium about the Y axis can be found be obtain,
_ ) OMyy OMpy
Q=7+ 3y t (13)

Similarly, it is assumed that Mxy = Myx due to complementary shear stress condition Tyy, =
Tyx- Differentiating Eq. (12) with respect to y,
_0Qy _ 0°My | 9*Myy, 02 Mpy

dy  ay? + 0x 9y + ay? (14)
Differentiating Eq. (12) with respect to x,
0 _ My My 0P My

ax _ 9x2 + dxdy + ox2 (15)

Substituting Eq. (14), (15) in vertical equilibrium Eq. (10).
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92My 0* My,  9°My 92 Mpy 02 Mpy
( %2 +2 ox dy + dy? )+ ( %2 + )+ Pz (tx, Y) - P * Y) h 0t2 - (16)
0.

Now, the moment expressions in Equation (5), (7), and (8) can be differentiated twice to
obtain 9% M,/dx?, 8* My,/dy?* and 0% My,/dx dy. The partial differential equation of a thin

late under transverse vibration is obtained by simplifying and substituting these into Eq. (16).
0*Mpy =~ 0% Mpy

(Xy)h—+DV4W(txy)— o =+ 02 Y + p, (tx,y). (17)
Where,

4 o* 4w 0t w

Viw = +2azay + - (18)

In analyzmg a simply supported rectangular plate, the natural frequencies and corresponding
mode shapes are crucial for understanding the vibrational characteristics. Each mode shape
represents a specific vibration pattern, and it depends on both spatial variables x and y. For a
plate with simply supported edges, the mode shapes are defined by the spatial coordinates, with
the mode numbers m and n representing the X and Y directions, respectively.

The normalized mode shape for a given mode (m, n) given as,
mmxX . DTy

Win(x,y) = \/%ph sin — sin—=, (19)
Where the natural frequency of mode (m, n) is:
2 2

omn = (4 5) [ @
2.2 Mode Shape
For a rectangular plate with all sides simply supported, the mode shape for vibration is provided
by Equation (19). These mode shapes, defined by the product of sine functions representing
the plate's deformation pattern, can be visualized using MATLAB®. Solving the governing
differential equation (Eq. 20) for the plate's motionyields the natural frequencies for each mode
shape. This solution considers the. plate's boundary conditions and physical properties,
including material density, elasticity, and geometry. Figure 3, generated using MATLAB®O,
illustrates the mode shapes for a simply supported plate. These visualizations reveal how the
plate deforms and vibrates under different modes, essential for designing effective vibration
control strategies.

A 2t
(a) Mode: [m=1. n=i}| (b) Mode: [m=.1= 1‘:1=é]

]

2 e (d) Mode: [m= n="]
(c) Mode: [m=2_n=1]

. e e, TSN

A T ] (® Mode: [m=3. n=2]
Fig. 3 Mode shapes for a simply supported plate
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In the mode shapes, the product of sine functions indicates the number of half-waves in each
direction (X and Y). For example, the mode shape corresponding to m=1 and n=1 would have
one half-wave in each direction, representing the simplest vibration mode. As the values of m
and n increase, the mode shapes become more complex, exhibiting additional nodes and
antinodes. These higher modes correspond to higher natural frequencies and show more
intricate deformation patterns across the plate, as illustrated in Fig. 3.

2.3 Strain Plot

Taking the second derivative of the displacement eigenfunction with respect to the spatial
coordinates yields the strain equation (curvature eigenfunction). The displacement
eigenfunction for a mode shape of a rectangular plate with all sides simply supported is
typically expressed as:

Weey) = sin=—. sin=- (mn =1,2,3,4........) | (fromEq. 19)

The strain components, which are related to the curvature of the plate, can be derived by taking
the second derivatives of the displacement eigenfunction with respect to x and y:

i—‘:{' = (%) .sin (%) . Cos (m:x) (21)
= -(25) (). sin(22) @
i—‘;’ = (%) .sin (%) . COS (%) (23)
(3127"2" = — (an)Z . sin (%) . sin (%) (24)

The strain equation for the plate; considering the curvature.in both directions, is then:
d?w = d?w mn\? . (nm S {mTX

+ =|— (=) .sin(==).sin +
dx? dy? a b a

2 ’ (25)
mT . mmXx . nmy
—(—) .sin(——).sin(—=)|.
a a b

%V+— = —(m?) (sm—) ( sin%) : (—I:-)Z + (E)Z] (26)

Equation 26 describes the strain distribution ina rectangular plate with all edges simply supported for
a given mode shape defined by the mode numbers m and n. The strain distribution reveals how the plate
deforms under various vibrational modes, highlighting regions with maximum strain. This information
is crucial for optimizing the placement of piezoelectric actuators and sensors. The strain distribution is
plotted in MATLAB®O), illustrating the maximum and minimum strain regions for various mode shapes.
These plots are essential for visualizing the strain behavior of the plate and determining the optimal
placement of piezopatches for effective active vibration control. Figure 4 shows the resulting strain

plots. - -

D Mode: Tra=1. 5=17 (b) Mode: [m%1= n=2]

- |~
(<) Modé: fm=2,n=‘11 L2 Mocie L2, o2
3| _—

(e) Mode: [m=3_ n=1] () Mode: [m=3. n=2]

Fig. 4 Strain plot for a simply supported plate
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2.4 Objective Function
The curvature eigenfunction Eq. (26) for all the modes at different values of m and n can be
algebraically summed to represent the overall strain distribution in the plate-type structure. Eq.
(27), the combined strain equation, is used for a rectangular plate with all sides simply

supported.
W = 22482 < ) (sn22%)  (sn222) [(2)"+ ()]
"= Z%:l Zn:l W(x,y) . (27)

The combined strain equation, with M and N representing total modes in the X and Y directions,
outlines the cumulative strain distribution across the plate. By algebraically summing the strain
functions for different mode numbers m and n, the resulting equation gives a comprehensive
view of the regions experiencing maximum strain. This combined strain equation (Eq. 27) is
plotted in MATLAB®O, as shown in Figure 5.

sum of strain in the plate

400 = . ; " i e
e ‘ H 3004+
3004 . ‘ s H
200 - g ‘ 3 i s 2
i % j00.

100

im of strain

sum of strain

Fig. 5 Sum of strain plot
The Genetic Algorithm (GA) uses this equation as:the objective function to determine optimal
piezoelectric patch placements on a simply supported rectangular plate. The goal is to identify
points of maximum strain where the piezoelectric patches can most effectively mitigate
vibrations. By strategically placing the patches at these high-strain locations, the GA enhances
the efficiency and effectiveness of'.the active vibration control system. The strain-based
optimization positions piezoelectric patches to-enhance vibration control, improving active
system performance.
2.5 Optimal Position of Piezo Patches using GA
This study develops a binary-coded genetic algorithm (GA) to identify the optimal locations
for piezoelectric actuators and sensors on a plate, focusing on controlling multimode vibrations.
The GA's objective function is based on locating areas of maximum strain, making the design
variables the coordinates along the plate's length (x) and width (y). Strain varies across these
dimensions, guiding the algorithm to find the most effective actuator and sensor placements.
The optimization process is subject to several constraints:
1. Positional Constraints: The optimal positions must lie within the plate's boundaries,
defined by length (a) and width (b).
2. Non-Overlapping Constraint: When determining multiple actuator/sensor locations, the
patches must not overlap.
3. Variable Bound: The x and y positions along the plate range from 0 to 1, representing
normalized coordinates within the plate’s dimensions.
In scenarios requiring rapid vibration damping, a higher control force is needed. However, a
single actuator has a voltage limit beyond which it may lose its properties. Multiple patches are
used to meet the demand without exceeding the voltage limit. This study considers ten pairs of
actuators and sensors to control the initial modes of vibration effectively. The GA optimizes
the placement of these patches based on maximum strain locations, ensuring that the vibration
control is both efficient and effective. The binary-coded GA employs the following operators
and parameters:
* Selection Operator: Roulette wheel selection.
* Crossover Operator: Single-point crossover with an 80% probability.
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* Mutation Operator: Bitwise mutation with a 5% probability.
* Generations: The GA runs for 90 generations to converge on an optimal solution.
The GA was implemented in MATLABO by following these steps [34].
1. Initialization: Generate an initial population of potential solutions, each represented
by binary strings encoding the x and y coordinates.
2. Evaluation: Compute the fitness of each solution based on the strain objective
function.
3. Selection: The roulette wheel technique to select reproduction solutions, giving
preference to those with higher fitness levels.
4.  Crossover: Perform single-point crossover on selected solutions to generate offspring.
5. Mutation: Apply bitwise mutation to introduce variability.
6. Iteration: Repeat the evaluation, selection, crossover, and mutation steps for 90
generations.
7. Final Solution: Extract the best-performing solutions representing the optimal patch
locations on the plate.
This approach strategically positions the piezoelectric patches to maximize vibration control
efficiency, enhancing the overall performance of the active control system.
3 Results and Discussion
This research presents a simplified methodology for determining the optimal locations of
piezoelectric patches on plate-type structures to control multiple vibration modes. The
methodology leverages the displacement eigenfunction of the plate to trace the strain profile's
maxima along its length and width. The Genetic Algorithm (GA) identifies the optimal x and
y coordinates for placing piezoelectric patches at maximum strain values on the plate. The
proposed algorithm uses the displacement eigenfunction to identify these points of maximum
strain systematically. The GA efficiently searches the design space, converging on optimal
locations with the highest strain for effective. vibration control. The resulting x and y
coordinates, corresponding to the.positions of maximum strain identified by the GA, are
presented below:
patch_position_x =0.1900 0.8100 0.1900-0.8100 0.1900 0.8100 0.1900 0.8100
0.7900 0.7900
patch _position y=0.2800 0.2800 0.7200 0.7200 0.6900 0.6900 0.3100 0.3100
0.2800 0.7200
These coordinates represent the optimal locations for the piezoelectric patches. Placing the
patches at these positions targets the critical areas of the plate with the highest strain. This
maximizes the vibration control performance of the system.

10| | ]
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Fig. 6 Piezo patch location on plate structure

The figure marks the x and y positions of the identified optimal patch locations on the plate in
Figure 6. This figure visually illustrates the strategic placement of the piezoelectric patches
based on the GA results, highlighting the areas where maximum strain occurs. The optimal
placement positions the patches to effectively counteract vibrations, enhancing the plate's
overall dynamic performance.
The results are validated using another methodology widely adopted by researchers, which
utilizes collocated piezoelectric patches. This approach identifies the optimal locations based
on the highest position sensitivity of each vibration mode, focusing on controllability and
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observability. Many studies simultaneously optimize the placement of piezoelectric actuators
and sensors to ensure the system is controllable and observable. This integrated approach
maximizes control system performance using a cost function based on controllability and
observability measures. In practical applications, engineers consider a finite number of
vibration modes. Further result in spillover effects, where uncontrolled higher modes are
unintentionally triggered. Such effects can degrade control performance, particularly in cases
where higher frequency modes introduce instability or compromise system effectiveness.
Hence, optimizing the placement of piezoelectric patches to minimize spillover is critical.
Optimization techniques must account for these residual modes to ensure that higher-order
modes do not adversely affect the control system. In the context of optimal piezo patch
placement, we can formulate the equations for controllability and observability as follows:

3.1 Controllability Gramian Wc¢

The controllability Gramian Wc is a matrix that quantifies how easily a system can be
controlled from the input space (actuators). It is defined as:

W, = [,"eA BBT eA tdt, (28)
Where A is the system matrix (defining the system's dynamics), B is the input matrix (defining
how the input affects the system). The goal of actuator placement optimization is to maximize
the trace or determinant of Wc, indicating enhanced controllability:

Maximize trace(W.) or det(W,)
3.2 Observability Gramian Wo
The observability Gramian Wo is a matrix that measures how well the internal states of a system
can be inferred from the outputs (sensors). It is defined as:

W, = [~ ATt CTCeAt dt. (29)
The system matrix, A, represents the system dynamics, while the output matrix, C, maps the
system's states to the output. The goal of sensor placement optimization is to maximize the
trace or determinant of Wo, indicating enhanced observability:

Maximize trace(W,) or det(W,)
3.3 Combined Optimization Objective:
When optimizing actuator and sensor placement simultaneously, a common approach is
defining a combined objective function that incorporates controllability and observability
Gramians. One possible objective function is:
| ] = a.trace(W,) + B.trace(W,). | (30) |
Where, a and B are weighting factors that balance the importance of controllability and
observability. The optimization problem can then be formulated as:

maximize |

Subject to the constraints on the physical placement of piezo patches on the structure. For a
simply supported rectangular plate, the controllability and observability equations incorporate
boundary-specific mode shapes.
The controllability and observability Gramians for this case can be expressed.
3.4 Controllability Gramian Wc
The mode shapes can be used to define the controllability Gramian Wc for a plate whose edges
are all simply supported.

We = Z¥=1 2?:1 Bm;—anT- (31)
Where: B, is the mode participation factor for the actuator placed at a specific location,
Amn 18 the eigenvalue corresponding to the (m, n).

3.5 Observability Gramian Wo
Similarly, the observability Gramian Wo is given by:

M N CmnTCmn
Wo =2m=1dn=1"5 - (32)
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Where C,,, is the mode participation factor for the sensor placed at a specific location,

Amn 18 the eigenvalue corresponding to the (m, n) mode.

3.6 Combined Optimization Objective

The combined objective function for the optimal placement of piezoelectric patches (actuators
and sensors) can be expressed as:

J = . g, SN, BnPans 4 g oy $N_ | Cnn Con (33)

mn

Here, the goal is to maX|m|ze J with respect to the locations of the piezoelectric patches on the
plate, ensuring optimal controllability and observability. The piezo patch placement must
adhere to the plate's physical constraints, ensuring they are within its boundaries. The patches
should be positioned to maximize the controllability and observability criteria. In the
controllability and observability Gramians, B, and C,,, represent the mode participation
factors for the actuator and sensor, respectively, for a given mode (m, n) of the plate. These
factors quantify how much a particular mode is influenced by the actuator or sensed by the
sensor. The mode participation factor describes how effectively the actuator excites the (m, n)
mode when placed at a particular location on the plate. It can be stated mathematically as,

= J; J, Wyy®a,, dxdy,  and

a rb
= fo fo Wiy @s,, dxdy.
Where, Wy, is mode shape, @ Axy and (Z)Sxy are the shape function of the actuator, and sensor's

(34)

influence. The controllability and observability of the simply supported plate on all sides,
considering the spillover effect;are analyzed and plotted using MATLAB®©. These plots are
shown in Figure 7. The spillover effect, caused by higher-order modes not directly controlled,
is accounted for to maintain effective control and sensing without exciting unintended modes.

Controllability and Observability in Plate

Controllability and Ohservability
N

=0

Fig. 7 Controllability and observability plot
This study compares the patch positions identified with those determined by other widely used
methodologies. Researchers such as Bruant et al. [35], Narwal and Chhabra [36], and Ning [37]
have used these methodologies to locate the optimal positions of piezoelectric patches based
on controllability and observability. Both methodologies identify identical patch positions for
different modes, as listed in the Table 1.
Table 1 Piezoelectric patch position with two different methodologies.

Mode (m, n) Developed Methodology Controllability Observability

' First | Second | Third | Fourth First Second | Third | Fourth
1.m=1,n=1]| 6,6 6,5 5,6 55 6, 6 6,5 5,6 55
2.m=2,n=1| 3,6 8,6 3,5 8, 5 3,6 8,6 3,5 8, 5
3. m=1,n=2| 6,3 6, 8 53 5,8 6,3 6, 8 53 58
4.m=3,n=1| 6,6 9,6 6,5 2,6 6, 6 9,6 6,5 2,6
5.m=2,n=2| 3,3 8,3 3,8 8,8 3,3 8,3 3,8 8,8
6. m=3,n=2| 6,3 6, 8 9,3 9,8 6,3 6, 8 93 9,8

The optimal locations of the piezoelectric patches, determined through a GA using the sum of
strain as the objective function, are shown in Fig. 6. These positions precisely match the optimal
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locations derived from maximizing the controllability and observability of the simply

supported plate, as illustrated in Fig. 8. Both approaches yield the same patch positions, as
highlighted in Fig. 6.

1

=NUAOONROO

12 3 45 6 7 8 9 10

Fig. 8 Piezo patch location on plate structure
The results show a close alignment when compared with the proposed methodology, which
uses the displacement eigenfunction and strain profile to determine patch placement. Both
approaches identify critical high-strain regions on the plate, though the proposed methodology
simplifies the process by reducing computational complexity. The comparison shows that the
controllability and observability method focuses more directly on system performance. In
contrast, the proposed strain-based approach offers a computationally efficient path to optimal
placement with similar effectiveness. This validation reinforces the practical applicability of
the proposed methodology in real-world scenarios, ensuring that the optimized placement is
robust across different criteria for performance maximization.
The proposed methodology successfully identifies the-optimal piezoelectric patch locations,
providing a robust solution for controlling multimode vibrations in plate-type structures. Using
the displacement eigenfunction and the GA demonstrates a powerful approach to optimizing
the design of active vibration control systems.
4. Conclusion
This paper introduces a streamlined approach for,determining the optimal placement of
piezoelectric patches on plate-type structures to enhance multimode vibration control. The
methodology uses the displacement eigenfunction and a GA to identify areas with maximum
strain on the plate. Further facilitating the strategic placement of piezoelectric actuators and
sensors. The study examines explicitly a pinned rectangular plate at all the edges, using its
strain profile as the objective function for the optimization process. The results demonstrate
that the proposed methodology can efficiently determine optimal patch locations, enhancing
vibration control performance. Positioning multiple piezoelectric patches at optimal locations
enhances vibration damping across multiple modes. This effectively minimizes overall
structural vibrations.
The methodology developed in this study provides an efficient solution for optimizing
piezoelectric patch placement on flexible structures. It is particularly effective in complex
multimode vibration scenarios. Leveraging strain distribution and GA optimization simplifies
identifying optimal actuator and sensor locations, enhancing control system performance. This
work advances active vibration control technology, offering a robust framework to enhance the
dynamic performance and stability of plate-type structures. It holds potential applications
across various engineering fields.
Future work could expand the methodology to account for different boundary conditions, such
as clamped-clamped, clamped-free, or simply supported-free, increasing its versatility. Further
research may focus on optimizing irregularly shaped plates or plates with varying thicknesses,
making the approach more applicable to complex structures. Additionally, the methodology
could be refined to handle dynamic boundary conditions and real-time adaptation in response
to operational changes. This study is limited to simulations of regularly shaped, uniformly thick
flexible plates, excluding irregular geometries or variable thicknesses. It also focuses solely on
simply supported boundary conditions, without considering combinations of other conditions
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like clamped, hinged, or free edges.
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