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Purpose 

The purpose of this study is to present a simplified methodology for determining the optimal 

placement of piezoelectric patches on flexible plate-type structures, aimed at enhancing active 

vibration control efficiency. 

Methods 

The methodology utilizes the displacement eigenfunction to identify points of maximum strain, 

minimizing computational complexity. A Genetic Algorithm (GA) is applied to optimize patch 

placement by using strain distribution as the objective function. The study focuses on a pinned 

support rectangular plate, analyzing its strain profile to identify optimal locations for multiple 

piezoelectric patches. These identified locations are further validated using controllability and 

observability considerations. 

Results 

The results demonstrate that the proposed methodology effectively pinpoints optimal patch 

positions based on the plate's specific x and y coordinates, significantly improving vibration 

control performance across multiple modes. 

Conclusion 

The research provides a practical and efficient approach for optimizing piezoelectric patch 

placement, contributing to active vibration control technology advancements for flexible plate-

type structures. 

Abstract 

Effective active vibration control of flexible plate-type structures relies heavily on the optimal 

placement of piezoelectric actuators and sensors. This paper presents a simplified and control-

independent methodology for determining optimal patch locations to maximize control 

efficiency. The approach employs displacement eigenfunctions to identify regions of maximum 

strain, which serve as the objective function in a Genetic Algorithm (GA)-based optimization 

framework. A rectangular plate with pinned supports is considered as a case study, where 

multimode strain profiles are analyzed to establish the most effective patch locations. To ensure 

reliability, the GA-derived results are validated against controllability and observability 

indices. The findings demonstrate that identifying specific x–y coordinates of patch centers 

significantly improves vibration suppression performance. The proposed methodology reduces 

computational complexity, ensures accurate placement of actuators and sensors, and offers a 

practical framework for advancing active vibration control in flexible plate-type structures. 
Keywords: Active vibration control, optimal placement, flexible structure, genetic algorithm, 

optimal control. 

1. Introduction 

Recent advancements in space structures, aircraft, and robotic manipulators have driven the 

need for lightweight, flexible designs with low modal frequencies and damping ratios. 

However, these structures often suffer from higher flexibility, reduced damping, and prolonged 

vibration suppression times compared to rigid structures [1]. The findings highlight the 

importance of actively controlling vibration in large space structures, where precise control is 

critical. Smart structures featuring optimized actuator and sensor placements are essential for 

addressing these challenges. Researchers typically divide control methods into active and 

passive categories based on the disturbance frequency. Active methods address disturbances 

below 1000 Hz, while passive methods manage those above 1000 Hz. Active control is often 
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 preferred for its effectiveness across varying conditions. Traditionally, passive isolators and 

dampers, such as rubber mountings and passive dampers, were used to manage mechanical 

vibrations [2].  Active vibration control has regained popularity due to developments in digital 

signal processing (DSP) and sensors and actuators. A typical smart structure incorporates 

sensors to track dynamic behavior, a processor to analyze the data, actuators to carry out the 

control actions, and a power source to drive the system. The field has gained significant interest 

due to advancements in space exploration, rapid processors, responsive operating systems, and 

high-performance sensors and actuators [3, 4]. Optimal active vibration control involves 

analyzing vibrational properties, identifying ideal sensor and actuator locations, and designing 

an efficient control system. Researchers have extensively studied placement techniques using 

the linear quadratic regulator (LQR) to control composite shells with bonded piezoelectric 

patches [5]. 

Piezoelectric materials, valued for their rapid response, flexibility, lightweight, and low power 

use, are key in active vibration control (AVC). These materials convert electrical signals to 

mechanical strains and vice versa, making them ideal for sensing and actuation. Piezoelectric 

materials are used as layers, bonded patches, cylindrical stacks, screen-printed layers, fiber 

composites, and graded material patches. Piezoelectric patches that are implanted or surface-

mounted give precise control over structural reactions [6–11]. Effective structural vibration 

control requires careful consideration of the number and positioning of piezoelectric sensors 

and actuators. Significant research has focused on designing and placing these components to 

enhance the control of flexible structures, ensuring maximum performance in vibration 

suppression [12]. Misplacement of sensors and actuators can result in issues such as reduced 

observability and controllability and unwanted spillover effects [13]. The efficiency of energy 

harvesting and vibration damping is highly dependent on the strategic placement of transducers 

within a structure. Consequently, many studies emphasize optimizing this placement to 

improve performance. Determining the optimal location for piezoelectric patches in smart 

structures is crucial for the effective operation of active control systems, attracting interest 

across research disciplines. 

To achieve effective control, strategically place actuators at locations with higher strain in both 

the time and frequency domains. Optimal active vibration control involves calculating 

vibrations, placing sensors and actuators, and designing the control system. Many researchers 

have tackled the challenge of determining optimal sensor and actuator placement. The linear 

quadratic regulator (LQR) method was utilized for active vibration control of laminated 

composite shells integrated with bonded piezoelectric patches. Other studies have optimized 

performance indices using H2 norms [14] and H∞ norms for sensor and actuator positions. 

Linear quadratic Gaussian (LQG) schemes have optimized sensor and actuator placement, 

while controllability and observability grammian methods have been used for optimal 

placement [13]. 

Han and Lee [15] examined sensor and actuator placement for controllability, observability, 

and spillover prevention using controllability grammian indices. Dhuri and Seshu [16] focused 

on maximizing controllability and observability measures for active piezoelectric damping. 

Kumar and Narayanan [17] explored the use of linear quadratic regulator (LQR) controllers to 

optimize the placement of piezoelectric patches on beam structures. Fein and Gaul [18] applied 

analytical strain energy methods to improve the positioning of piezoelectric sensors on 2D 

plates. Halim and Moheimani [19] proposed an optimization method based on modal and 

spatial controllability measures for thin plates. Similarly, Lin et al. [20] employed the maximal 

modal force rule to identify the optimal placement of actuators. Main et al. [21] investigated 

the effects of piezoelectric patch sizes and locations based on stiffness ratios between 

piezoceramic materials and substrate structures. Gupta et al. [22] reviewed optimal placement 

strategies, considering criteria such as modal forces, deflection, control effort, controllability, 

observability, and spillover minimization.  Controllability, observability, energy dissipation, 
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 and system stability are key optimization objectives in placing piezoelectric sensors and 

actuators. 

Several studies have emphasized the application of genetic algorithms to determine optimal 

configurations for piezoelectric systems [15, 23-24]. These algorithms excel at handling non-

convex search spaces involving both continuous and discrete optimization variables within 

multi-objective frameworks. Mehrabian and Yousefi-Koma [25] utilized bio-inspired 

approaches, incorporating finite element analysis and neural networks, to determine optimal 

configurations for piezo actuators. Xu and Jiang [26] utilized genetic algorithms to optimize 

the placement of piezoelectric elements within truss structures. 

Plates play a vital role as structural elements in modern construction, as well as in aerospace 

and aeronautical engineering. Various models for plate analysis based on different theories are 

investigated in the literature. Kirchhoff plate theory is typically employed for the dynamic 

modeling thin plates, while Mindlin plate theory is utilized for thick plates. Gao et al. [27] 

studied the vibration and acoustic behavior of a supported thin plate, focusing on harmonic 

point forces or incident plane waves as primary noise sources. They also explored the use of 

piezoelectric patches for sound level control. Caruso et al. [28] investigated vibration control 

in an elastic plate clamped along one edge, focusing on its response to an impulsive transverse 

force applied at a free corner. Lam et al. [29] proposed a finite element model incorporating 

piezoelectric sensors and actuators for active vibration control, further validated using a 

cantilever composite plate. Narayanan and Balamurugan [30] developed a finite element 

approach for modeling laminated structures with integrated piezoelectric layers, accounting for 

the effects of stiffness, mass, and electromechanical coupling in the piezoelectric laminates. 

Tzou and Fu [31] developed dynamic models to analyze the vibration response of supported 

elastic rectangular plates with variable rectangular piezoelectric patches. In flexible structures, 

mapping physical displacements onto a modal basis enables independent monitoring and 

control of each mode through individual sensors and actuators. Daraji et al.[32] identified 

optimal patch positions on cantilever plate structures by measuring sensor effectiveness as a 

percentage. The methodology involved normalizing each sensor's output voltage by dividing it 

by the maximum output for each mode, utilizing both time and frequency domain analyses. 

This approach was applied to dynamically symmetric and asymmetric structures under external 

forces and base excitations. The approach optimized sensor and actuator distribution using time 

and frequency response analysis, comparing results with published findings for cantilever 

plates. 

The provided literature review highlights the challenges associated with existing 

methodologies for optimizing the placement of piezoelectric patches on structures for vibration 

control. These approaches are time-consuming and computationally complex due to the tedious 

math and high cost of handling many elements. Mode shapes are inherent to structures, with 

displacement patterns remaining consistent for each mode, while the magnitude varies with 

different modal displacements. The strain profile follows the displacement eigenfunction of the 

mode shape, and regions of maximum strain are the most effective areas for piezoelectric patch 

placement. The displacement eigenfunction of the structure’s mode shapes can be 

differentiated to determine the regions of maximum strain. Since these strain regions do not 

change for a given mode shape, they provide an efficient means of identifying the optimal 

locations for piezoelectric patches.  

The proposed hypothesis suggests a simplified approach for identifying optimal piezoelectric 

patch locations by leveraging the displacement eigenfunction for a plate-type structure. This 

methodology assumes that maximum strain regions, which are crucial for effective vibration 

control, can be determined by analyzing the displacement eigenfunction. The steps in this 

approach would include: 

Utilizing Displacement Eigenfunction: The displacement eigenfunction of a mode shape is a 

reliable indicator of strain patterns. By differentiating the eigenfunction, regions of maximum 
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 strain can be pinpointed. 

1. Objective Function Based on Kirchhoff Plate Theory: For thin plates with small 

deflections, Kirchhoff plate theory will derive an objective function that accurately 

describes the strain distribution across the plate. 

2. Simplification of Mathematical Formulations: The new methodology reduces 

mathematical complexity by focusing on strain regions derived from displacement 

eigenfunctions. 

3. Efficiency in Computation: This methodology avoids full-scale optimization of actuator 

positions, making it more computationally efficient. It is particularly suited for systems with 

many degrees of freedom.  

The study presents an efficient solution for optimal piezoelectric patch placement using strain 

distribution from mode shapes and displacement eigenfunctions. This method simplifies the 

optimization process, making it well-suited for complex structures with numerous 

degrees of freedom. The proposed approach is validated by comparing its accuracy and 

computational efficiency with other existing methods, highlighting its effectiveness for 

real-world applications. 

2. Methodology 
The placement of actuators and sensors plays a crucial role in effectively controlling vibrations in plate-

type structures. Piezoelectric patches (piezopatches) are widely used as actuators and sensors in 

aerospace, automotive, and civil engineering for their compact actuation and sensing capabilities. 

Determining the optimal placement of piezopatches is complex and computationally intensive, 

particularly for large structures with dynamic behavior. 

This study aims to develop a simplified methodology for the optimal placement of piezo patches in 

plate-type structures. The proposed approach focuses on identifying the ideal locations by targeting 

points of maximum strain, which is critical for effective vibration control. The methodology uses 

displacement eigenfunctions to reduce computational time and complexity while ensuring optimal 

piezopatch placement for maximum effectiveness. The streamlined process proposed in this study offers 

a practical solution for engineers and researchers working on vibration control in plate-type structures. 

The proposed methodology improves the efficiency of the design process while ensuring that the 

placement of actuators and sensors achieves optimal performance in vibration suppression. The 

flowchart in Figure 1 illustrates the algorithm used to accomplish this. 

 
Fig. 1 Flow chart of the proposed methodology 
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 2.1 Modeling of the Flexible Plate Structure: 

The section focuses on developing dynamic models for a flexible plate structure where all sides 

are pinned and supported. The Kirchhoff plate theory derives the dynamic model, which applies 

to thin plates with small deflections. The assumption of small deflections allows the use of a 

small angle approximation, significantly simplifying the derivation process and enabling the 

linearization of the equations of motion. Several key assumptions are made in the modeling 

process to ensure the validity of the derived equations [33]. 

1.The plate is of uniform thickness. 

2. Shear deformation, lateral stress, and rotational inertia are neglected. 

The plate under study is a thin structure with dimensions a × b × h, where its behavior is 

defined by material properties such as Young's modulus (E), density (ρ), and Poisson's ratio 

(ν). The coordinate system is aligned with the plate's mid-plane, referred to as the neutral 

surface, where longitudinal bending strain is absent. A diagram of this plate element is shown 

in Figure 2. 

 
 

(a) (b) 

Fig. 2 (a) Thin plate in transverse vibration, (b) small element of the plate [33] 

The deflection along the X and Y axes can be described 

u = −z
∂w

∂x
 , 

(1) 
v = −z

∂w

∂y
.  

Where w is deflection in z direction. The strains can be derived from Eq. (1) using Hooke's 

Law. 

ϵx =
∂u

∂x
=  −z 

∂2w

∂x2  ,  

(2) ϵy =
∂v

∂y
=  −z 

∂2w

∂y2  , and  

γxy =
∂u

∂y
+

∂v

∂x
=  −2z 

∂2w

∂x ∂y
 . 

Where γxy represents the shear strain, while ϵx and ϵy denote the longitudinal strains in X and 

Y directions respectively. According Hooke's Law, these strains are related to stresses as 

follows: 

ϵx =
1

E
(σx − vσy), 

(3) ϵy =
1

E
(σy − vσx) , and  

γxy =
1

G
 τxy =  2 

(1+v)

E
 τxy. 

The shear modulus G is related to Young's modulus as expressed above. The shear stress is 

represented by τxy while γx and γy correspond to longitudinal stresses in the X and Y directions 

respectively. Consequently, the stresses can be derived from Eq. (2) and (3). 

σx = −
E z

(1−v2)
 (

∂2w

∂x2 + v 
∂2w

∂y2 ) , (4) 

https://www.olx.in/item/counselor-advisor-ID1jYeC3.html


Education, Innovation, Business, Social Sciences, IT & Engineering (ICEIBSSIE-2025)  

 

 

22 

 σy = −
E z

(1−v2)
 (

∂2w

∂y2 + v 
∂2w

∂x2 ) , and  

τxy = −
E z

(1−v)
 

∂2w

∂x ∂y
. 

The moment per unit length, Mx , is determined by integrating the allied stress across the 

thickness of the plate, 

Mx = ∫  z
h

2

−
h

2

 σx dz  

      = −D (
∂2w

∂x2 + v 
∂2w

∂y2 ) 

(5) 

In this case, D denotes the flexural rigidity of the plate. 

D =
E h3

12 (1−v2)
. (6) 

Similarly, for My, 

My = ∫  z
h

2

−
h

2

 σy dz  

      = −D (
∂2w

∂y2 + v 
∂2w

∂x2 ) 

(7) 

The torsional moment per unit length Mxy, 

Mxy = ∫  z
h

2

−
h

2

 τxy dz        

           = −D (1 − v) 
∂2w

∂x ∂y
 

(8) 

Where dMpx and dMpy, represent the external moments per unit length, and pz represents the 

pressure in the Z direction. As illustrated in Fig. 2, Qx and Qy indicate for the shearing forces 

per unit length. By considering the vertical forces in the Z direction and applying Newton’s 

second law, 

Qx dy −  (Qx +  
∂Qx 

∂x
 dx)  dy + Qy dx −  (Qy  + 

∂Qy 

∂y
 dy)  dx +

pz (t, x, y) dx dy −  ρ (x, y) h dx dy 
∂2w

∂t2 = 0. 
(9) 

Dividing by dx dy yields: 

−
∂Qx

∂x
− 

∂Qy

∂y
+  pz (t, x, y) −  ρ (x, y) h 

∂2w

∂t2 = 0. (10) 

Taking the moment equilibrium about the X-axis and neglecting the plate's rotational inertia, 

pz (t, x, y) dx dy
dy

2
− 

∂Qx 

∂x
 dx dy

dy

2
 − (Qy  +  

∂Qy 

∂y
 dy)  dx dy − 

∂My 

∂y
 dy dx −

 
∂Mxy 

∂x
 dx dy − d Mpy dx = 0. 

(11) 

Dividing by dx dy and ignoring the higher order term dy, 

− Qy =  
∂My 

∂y
+  

∂Mxy 

∂x
+ 

∂Mpy 

∂y
. (12) 

In the same way, the moment equilibrium about the Y axis can be found be obtain, 

− Qx =  
∂Mx 

∂x
+  

∂Mxy 

∂y
+  

∂Mpx 

∂x
. (13) 

Similarly, it is assumed that Mxy = Myx due to complementary shear stress condition τxy = 

τyx. Differentiating Eq. (12) with respect to y, 

− 
∂Qy

∂y
=  

∂2My 

∂y2 + 
∂2 Mxy

∂x ∂y
+   

∂2 Mpy

∂y2 . (14) 

Differentiating Eq. (12) with respect to x, 

− 
∂Qx

∂x
=  

∂2Mx 

∂x2 +  
∂2 Mxy

∂x ∂y
+  

∂2 Mpx

∂x2 . (15) 

Substituting Eq. (14), (15) in vertical equilibrium Eq. (10). 
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 (
∂2Mx 

∂x2 +  2 
∂2 Mxy

∂x ∂y
+ 

∂2My 

∂y2 ) + (
∂2 Mpx

∂x2 +  
∂2 Mpy

∂y2 ) +  pz (t, x, y) −  ρ (x, y) h 
∂2w

∂t2 =

0.  
(16) 

Now, the moment expressions in Equation (5), (7), and (8) can be differentiated twice to 

obtain  ∂2 Mx ∂x2⁄ , ∂2 My ∂y2⁄  and ∂2 Mxy ∂x ∂y⁄ . The partial differential equation of a thin 

plate under transverse vibration is obtained by simplifying and substituting these into Eq. (16). 

ρ (x, y) h 
∂2w

∂t2 + D ∇4 w(t, x, y) =  
∂2 Mpx

∂x2 +  
∂2 Mpy

∂y2  + pz (t, x, y). (17) 

Where,  

∇4 w =  
∂4 w

∂x4 + 2 
∂4 w

∂x2  ∂y2 + 
∂4 w

∂y4 . (18) 

In analyzing a simply supported rectangular plate, the natural frequencies and corresponding 

mode shapes are crucial for understanding the vibrational characteristics. Each mode shape 

represents a specific vibration pattern, and it depends on both spatial variables x and y. For a 

plate with simply supported edges, the mode shapes are defined by the spatial coordinates, with 

the mode numbers m and n representing the X and Y directions, respectively. 

The normalized mode shape for a given mode (m, n) given as, 

Wmn(x, y) =  
2

√a b ρ h
 sin

m π x

a
 sin

n π y

b
, (19) 

Where the natural frequency of mode (m, n) is: 

ωm n =  π2  (
m2

a2 +  
n2

b2) √
D

ρ h
. (20) 

2.2 Mode Shape 

For a rectangular plate with all sides simply supported, the mode shape for vibration is provided 

by Equation (19). These mode shapes, defined by the product of sine functions representing 

the plate's deformation pattern, can be visualized using MATLAB©. Solving the governing 

differential equation (Eq. 20) for the plate's motion yields the natural frequencies for each mode 

shape. This solution considers the plate's boundary conditions and physical properties, 

including material density, elasticity, and geometry. Figure 3, generated using MATLAB©, 

illustrates the mode shapes for a simply supported plate. These visualizations reveal how the 

plate deforms and vibrates under different modes, essential for designing effective vibration 

control strategies. 

 
Fig. 3 Mode shapes for a simply supported plate 
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 In the mode shapes, the product of sine functions indicates the number of half-waves in each 

direction (X and Y). For example, the mode shape corresponding to m=1 and n=1 would have 

one half-wave in each direction, representing the simplest vibration mode. As the values of m 

and n increase, the mode shapes become more complex, exhibiting additional nodes and 

antinodes. These higher modes correspond to higher natural frequencies and show more 

intricate deformation patterns across the plate, as illustrated in Fig. 3. 

2.3 Strain Plot 

Taking the second derivative of the displacement eigenfunction with respect to the spatial 

coordinates yields the strain equation (curvature eigenfunction). The displacement 

eigenfunction for a mode shape of a rectangular plate with all sides simply supported is 

typically expressed as: 

W(x,y) =  sin
m π x

a
 .  sin

n π y

b
                           (m, n = 1, 2, 3, 4 … … … . . )            (from Eq. 19) 

The strain components, which are related to the curvature of the plate, can be derived by taking 

the second derivatives of the displacement eigenfunction with respect to x and y: 
dw

dx
= (

m π 

a
) . sin (

n π y

b
) .  cos (

m π x

a
). (21) 

d2w

dx2 =  − (
m π 

a
)

2

 .  sin (
n π y

b
) .  sin (

m π x

a
). (22) 

dw

dy
= (

n π 

b
) . sin (

m π x

a
) .  cos (

n π y

b
). (23) 

d2w

dy2 =  − (
m π 

a
)

2

 .  sin (
m π x

a
) .  sin (

n π y

b
). (24) 

The strain equation for the plate, considering the curvature in both directions, is then: 

d2w

dx2 +
d2w

dy2 = [− (
m π 

a
)

2

. sin (
n π y

b
) . sin (

m π x

a
)] +

[ − (
m π 

a
)

2

. sin (
m π x

a
) . sin (

n π y

b
)]. 

(25) 

d2w

dx2 +
d2w

dy2 =  −(π2) (sin
m π x

a
 ) . (  sin

n π y

b
) . [(

m

a
)

2

+  (
n

b
)

2
]. (26) 

Equation 26 describes the strain distribution in a rectangular plate with all edges simply supported for 

a given mode shape defined by the mode numbers m and n. The strain distribution reveals how the plate 

deforms under various vibrational modes, highlighting regions with maximum strain. This information 

is crucial for optimizing the placement of piezoelectric actuators and sensors. The strain distribution is 

plotted in MATLAB©, illustrating the maximum and minimum strain regions for various mode shapes. 

These plots are essential for visualizing the strain behavior of the plate and determining the optimal 

placement of piezopatches for effective active vibration control. Figure 4 shows the resulting strain 

plots. 

 
Fig. 4 Strain plot for a simply supported plate 
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 2.4 Objective Function 

The curvature eigenfunction Eq. (26) for all the modes at different values of m and n can be 

algebraically summed to represent the overall strain distribution in the plate-type structure. Eq. 

(27), the combined strain equation, is used for a rectangular plate with all sides simply 

supported. 

W(x,y)
′′ =  

d2w

dx2 +
d2w

dy2 =  −(π2) (sin
m π x

a
 ) . (  sin

n π y

b
) . [(

m

a
)

2

+ (
n

b
)

2
].  

W′′ = ∑ ∑ W(x,y)
′′N

n=1
M
m=1 . (27) 

The combined strain equation, with M and N representing total modes in the X and Y directions, 

outlines the cumulative strain distribution across the plate. By algebraically summing the strain 

functions for different mode numbers m and n, the resulting equation gives a comprehensive 

view of the regions experiencing maximum strain. This combined strain equation (Eq. 27) is 

plotted in MATLAB©, as shown in Figure 5. 

 
 

Fig. 5 Sum of strain plot 

The Genetic Algorithm (GA) uses this equation as the objective function to determine optimal 

piezoelectric patch placements on a simply supported rectangular plate. The goal is to identify 

points of maximum strain where the piezoelectric patches can most effectively mitigate 

vibrations. By strategically placing the patches at these high-strain locations, the GA enhances 

the efficiency and effectiveness of the active vibration control system. The strain-based 

optimization positions piezoelectric patches to enhance vibration control, improving active 

system performance. 

2.5 Optimal Position of Piezo Patches using GA 

This study develops a binary-coded genetic algorithm (GA) to identify the optimal locations 

for piezoelectric actuators and sensors on a plate, focusing on controlling multimode vibrations. 

The GA's objective function is based on locating areas of maximum strain, making the design 

variables the coordinates along the plate's length (x) and width (y). Strain varies across these 

dimensions, guiding the algorithm to find the most effective actuator and sensor placements. 

The optimization process is subject to several constraints: 

1. Positional Constraints: The optimal positions must lie within the plate's boundaries, 

defined by length (a) and width (b). 

2. Non-Overlapping Constraint: When determining multiple actuator/sensor locations, the 

patches must not overlap. 

3. Variable Bound: The x and y positions along the plate range from 0 to 1, representing 

normalized coordinates within the plate’s dimensions. 

In scenarios requiring rapid vibration damping, a higher control force is needed. However, a 

single actuator has a voltage limit beyond which it may lose its properties. Multiple patches are 

used to meet the demand without exceeding the voltage limit. This study considers ten pairs of 

actuators and sensors to control the initial modes of vibration effectively. The GA optimizes 

the placement of these patches based on maximum strain locations, ensuring that the vibration 

control is both efficient and effective. The binary-coded GA employs the following operators 

and parameters: 

• Selection Operator: Roulette wheel selection. 

• Crossover Operator: Single-point crossover with an 80% probability. 
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 • Mutation Operator: Bitwise mutation with a 5% probability. 

• Generations: The GA runs for 90 generations to converge on an optimal solution. 

The GA was implemented in MATLAB© by following these steps [34]. 

1. Initialization: Generate an initial population of potential solutions, each represented 

by binary strings encoding the x and y coordinates. 

2. Evaluation: Compute the fitness of each solution based on the strain objective 

function. 

3. Selection: The roulette wheel technique to select reproduction solutions, giving 

preference to those with higher fitness levels. 

4. Crossover: Perform single-point crossover on selected solutions to generate offspring. 

5. Mutation: Apply bitwise mutation to introduce variability. 

6. Iteration: Repeat the evaluation, selection, crossover, and mutation steps for 90 

generations. 

7. Final Solution: Extract the best-performing solutions representing the optimal patch 

locations on the plate. 

This approach strategically positions the piezoelectric patches to maximize vibration control 

efficiency, enhancing the overall performance of the active control system. 

3 Results and Discussion 

This research presents a simplified methodology for determining the optimal locations of 

piezoelectric patches on plate-type structures to control multiple vibration modes. The 

methodology leverages the displacement eigenfunction of the plate to trace the strain profile's 

maxima along its length and width. The Genetic Algorithm (GA) identifies the optimal x and 

y coordinates for placing piezoelectric patches at maximum strain values on the plate. The 

proposed algorithm uses the displacement eigenfunction to identify these points of maximum 

strain systematically. The GA efficiently searches the design space, converging on optimal 

locations with the highest strain for effective vibration control. The resulting x and y 

coordinates, corresponding to the positions of maximum strain identified by the GA, are 

presented below: 

patch_position_x = 0.1900    0.8100    0.1900    0.8100    0.1900    0.8100    0.1900    0.8100    

0.7900    0.7900 

patch_position_y = 0.2800    0.2800    0.7200    0.7200    0.6900    0.6900    0.3100    0.3100    

0.2800    0.7200 

These coordinates represent the optimal locations for the piezoelectric patches. Placing the 

patches at these positions targets the critical areas of the plate with the highest strain. This 

maximizes the vibration control performance of the system. 

 
Fig. 6 Piezo patch location on plate structure 

The figure marks the x and y positions of the identified optimal patch locations on the plate in 

Figure 6. This figure visually illustrates the strategic placement of the piezoelectric patches 

based on the GA results, highlighting the areas where maximum strain occurs. The optimal 

placement positions the patches to effectively counteract vibrations, enhancing the plate's 

overall dynamic performance. 

The results are validated using another methodology widely adopted by researchers, which 

utilizes collocated piezoelectric patches. This approach identifies the optimal locations based 

on the highest position sensitivity of each vibration mode, focusing on controllability and 
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 observability. Many studies simultaneously optimize the placement of piezoelectric actuators 

and sensors to ensure the system is controllable and observable. This integrated approach 

maximizes control system performance using a cost function based on controllability and 

observability measures. In practical applications, engineers consider a finite number of 

vibration modes. Further result in spillover effects, where uncontrolled higher modes are 

unintentionally triggered. Such effects can degrade control performance, particularly in cases 

where higher frequency modes introduce instability or compromise system effectiveness. 

Hence, optimizing the placement of piezoelectric patches to minimize spillover is critical. 

Optimization techniques must account for these residual modes to ensure that higher-order 

modes do not adversely affect the control system. In the context of optimal piezo patch 

placement, we can formulate the equations for controllability and observability as follows: 

3.1 Controllability Gramian Wc 

The controllability Gramian Wc is a matrix that quantifies how easily a system can be 

controlled from the input space (actuators). It is defined as: 

Wc = ∫ eAt B BT eATt dt
∞

0
. (28) 

Where A is the system matrix (defining the system's dynamics), B is the input matrix (defining 

how the input affects the system). The goal of actuator placement optimization is to maximize 

the trace or determinant of Wc, indicating enhanced controllability: 

Maximize      trace(Wc)  or  det(Wc) 

3.2 Observability Gramian Wo  

The observability Gramian Wo is a matrix that measures how well the internal states of a system 

can be inferred from the outputs (sensors). It is defined as: 

Wo = ∫ eATt CTCeAt dt
∞

0
. (29) 

The system matrix, A, represents the system dynamics, while the output matrix, C, maps the 

system's states to the output. The goal of sensor placement optimization is to maximize the 

trace or determinant of Wo, indicating enhanced observability: 

Maximize      trace(Wo)  or  det(Wo) 

3.3 Combined Optimization Objective:  

When optimizing actuator and sensor placement simultaneously, a common approach is 

defining a combined objective function that incorporates controllability and observability 

Gramians. One possible objective function is: 

J = α. trace(Wc) + β. trace(Wo). (30) 

Where, α and β are weighting factors that balance the importance of controllability and 

observability. The optimization problem can then be formulated as: 

maximize J 
Subject to the constraints on the physical placement of piezo patches on the structure. For a 

simply supported rectangular plate, the controllability and observability equations incorporate 

boundary-specific mode shapes. 

The controllability and observability Gramians for this case can be expressed. 

3.4 Controllability Gramian Wc 

The mode shapes can be used to define the controllability Gramian Wc for a plate whose edges 

are all simply supported. 

Wc = ∑ ∑
BmnBmn

T

λmn

N
n=1

M
m=1 . (31) 

Where: Bmn is the mode participation factor for the actuator placed at a specific location, 

λmn is the eigenvalue corresponding to the (m, n). 

3.5 Observability Gramian Wo  

Similarly, the observability Gramian Wo is given by: 

Wo = ∑ ∑
Cmn

TCmn

λmn

N
n=1

M
m=1 . (32) 
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 Where Cmn is the mode participation factor for the sensor placed at a specific location, 

λmn is the eigenvalue corresponding to the (m, n) mode. 

3.6 Combined Optimization Objective  

The combined objective function for the optimal placement of piezoelectric patches (actuators 

and sensors) can be expressed as: 

J = α . ∑ ∑
BmnBmn

T

λmn

N
n=1

M
m=1  +  β. ∑ ∑

Cmn
TCmn

λmn

N
n=1

M
m=1 . (33) 

Here, the goal is to maximize J with respect to the locations of the piezoelectric patches on the 

plate, ensuring optimal controllability and observability. The piezo patch placement must 

adhere to the plate's physical constraints, ensuring they are within its boundaries. The patches 

should be positioned to maximize the controllability and observability criteria. In the 

controllability and observability Gramians, Bmn and Cmn  represent the mode participation 

factors for the actuator and sensor, respectively, for a given mode (m, n) of the plate. These 

factors quantify how much a particular mode is influenced by the actuator or sensed by the 

sensor.  The mode participation factor describes how effectively the actuator excites the (m, n) 

mode when placed at a particular location on the plate. It can be stated mathematically as, 

Bmn = ∫ ∫ Wxy∅Axy

b

0

a

0
dxdy,        and  

(34) 
Cmn = ∫ ∫ Wxy∅Sxy

b

0

a

0
dxdy. 

Where, Wxy is mode shape, ∅Axy and ∅Sxy are the shape function of the actuator, and sensor's 

influence. The controllability and observability of the simply supported plate on all sides, 

considering the spillover effect, are analyzed and plotted using MATLAB©. These plots are 

shown in Figure 7. The spillover effect, caused by higher-order modes not directly controlled, 

is accounted for to maintain effective control and sensing without exciting unintended modes. 

 
Fig. 7 Controllability and observability plot 

This study compares the patch positions identified with those determined by other widely used 

methodologies. Researchers such as Bruant et al. [35], Narwal and Chhabra [36], and Ning [37] 

have used these methodologies to locate the optimal positions of piezoelectric patches based 

on controllability and observability. Both methodologies identify identical patch positions for 

different modes, as listed in the Table 1. 

Table 1 Piezoelectric patch position with two different methodologies. 

Mode (m, n) 
Developed Methodology Controllability Observability 

First Second Third Fourth First Second Third Fourth 

1. m=1, n=1 6, 6 6, 5 5, 6 5, 5 6, 6 6, 5 5, 6 5, 5 

2. m=2, n=1 3, 6 8, 6 3, 5 8,  5 3, 6 8, 6 3, 5 8,  5 

3. m=1, n=2 6, 3 6, 8 5, 3 5, 8 6, 3 6, 8 5, 3 5, 8 

4. m=3, n=1 6, 6 9, 6 6, 5 2, 6 6, 6 9, 6 6, 5 2, 6 

5. m=2, n=2 3, 3 8, 3 3, 8 8, 8 3, 3 8, 3 3, 8 8, 8 

6. m=3, n=2 6, 3 6, 8 9, 3 9, 8 6, 3 6, 8 9, 3 9, 8 

The optimal locations of the piezoelectric patches, determined through a GA using the sum of 

strain as the objective function, are shown in Fig. 6. These positions precisely match the optimal 
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 locations derived from maximizing the controllability and observability of the simply 

supported plate, as illustrated in Fig. 8. Both approaches yield the same patch positions, as 

highlighted in Fig. 6. 

 
Fig. 8 Piezo patch location on plate structure 

The results show a close alignment when compared with the proposed methodology, which 

uses the displacement eigenfunction and strain profile to determine patch placement. Both 

approaches identify critical high-strain regions on the plate, though the proposed methodology 

simplifies the process by reducing computational complexity. The comparison shows that the 

controllability and observability method focuses more directly on system performance. In 

contrast, the proposed strain-based approach offers a computationally efficient path to optimal 

placement with similar effectiveness. This validation reinforces the practical applicability of 

the proposed methodology in real-world scenarios, ensuring that the optimized placement is 

robust across different criteria for performance maximization. 

The proposed methodology successfully identifies the optimal piezoelectric patch locations, 

providing a robust solution for controlling multimode vibrations in plate-type structures. Using 

the displacement eigenfunction and the GA demonstrates a powerful approach to optimizing 

the design of active vibration control systems. 

4. Conclusion 

This paper introduces a streamlined approach for determining the optimal placement of 

piezoelectric patches on plate-type structures to enhance multimode vibration control. The 

methodology uses the displacement eigenfunction and a GA to identify areas with maximum 

strain on the plate. Further facilitating the strategic placement of piezoelectric actuators and 

sensors. The study examines explicitly a pinned rectangular plate at all the edges, using its 

strain profile as the objective function for the optimization process. The results demonstrate 

that the proposed methodology can efficiently determine optimal patch locations, enhancing 

vibration control performance. Positioning multiple piezoelectric patches at optimal locations 

enhances vibration damping across multiple modes. This effectively minimizes overall 

structural vibrations.  

The methodology developed in this study provides an efficient solution for optimizing 

piezoelectric patch placement on flexible structures. It is particularly effective in complex 

multimode vibration scenarios. Leveraging strain distribution and GA optimization simplifies 

identifying optimal actuator and sensor locations, enhancing control system performance. This 

work advances active vibration control technology, offering a robust framework to enhance the 

dynamic performance and stability of plate-type structures. It holds potential applications 

across various engineering fields. 

Future work could expand the methodology to account for different boundary conditions, such 

as clamped-clamped, clamped-free, or simply supported-free, increasing its versatility. Further 

research may focus on optimizing irregularly shaped plates or plates with varying thicknesses, 

making the approach more applicable to complex structures. Additionally, the methodology 

could be refined to handle dynamic boundary conditions and real-time adaptation in response 

to operational changes. This study is limited to simulations of regularly shaped, uniformly thick 

flexible plates, excluding irregular geometries or variable thicknesses. It also focuses solely on  
simply supported boundary conditions, without considering combinations of other conditions 
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 like clamped, hinged, or free edges. 
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