

Intelligent Transport Systems in a City: Advantages and Disadvantages

Prof. (Dr.) Manish Pal, Professor, NIT Agartala, West Tripura, Pin: 799046

Abstract

Intelligent Transport Systems (ITS) represent a paradigm shift in urban mobility, leveraging advanced technologies such as Artificial Intelligence (AI), Internet of Things (IoT), big data analytics, and communication networks to enhance the safety, efficiency, and sustainability of transportation. This research paper provides a comprehensive analysis of the advantages and disadvantages associated with the implementation of ITS within a city context. On the advantages front, ITS significantly reduces traffic congestion through real-time Adaptive Traffic Control Systems (ATCS), optimizes public transport routing, minimizes travel times, and contributes to substantial fuel savings and reduced carbon emissions. Furthermore, through features like Automatic Incident Detection (AID), Intelligent Speed Adaptation (ISA), and emergency vehicle prioritization, ITS markedly improves road safety, decreases accident rates, and ensures quicker response times for emergency services. Enhanced parking management systems also alleviate a significant source of urban frustration and congestion.

However, the deployment of ITS is not without its considerable drawbacks. High initial investment and maintenance costs often pose a formidable barrier, particularly for developing cities. The intricate reliance on technology introduces vulnerabilities to cyberattacks, data breaches, and system failures, potentially leading to widespread disruption and compromising user privacy through extensive data collection. Equity concerns also arise, as the benefits of ITS might disproportionately favor technologically literate populations or areas with sufficient infrastructure, exacerbating digital divides. Moreover, the transition period can be challenging, requiring extensive public education and behavioral adaptation, alongside significant policy and regulatory reforms. This paper employs a critical framework to weigh the technological promise of ITS against its practical implementation challenges, drawing on global case studies to offer a balanced perspective on its role in shaping the future of urban mobility.

Key words: Intelligent Transport systems, Communication network, Adaptive Traffic Control System, Urban mobility.

1. Introduction to Intelligent Transport Systems

The urban landscape worldwide is undergoing an unprecedented transformation driven by population growth, rapid urbanization, and an escalating demand for mobility. Traditional transportation systems, characterized by fixed infrastructure and manual control, are increasingly inadequate to address the resultant challenges of traffic congestion, elevated accident rates, environmental pollution, and inefficient resource utilization. In response, Intelligent Transport Systems (ITS) have emerged as a revolutionary paradigm, offering sophisticated technological solutions to these complex urban problems. ITS encompasses a broad spectrum of applications, integrating advanced computing, communication, control, and sensing technologies into the existing transport infrastructure. Its primary objective is to optimize the performance of the entire transportation network by facilitating real-time data collection, processing, and dissemination to both infrastructure operators and end-users.

The core philosophy behind ITS is to make transport "smarter" – not merely faster or bigger. This involves creating a dynamic, responsive ecosystem where vehicles, infrastructure, and users communicate to create a more harmonious flow. Key components of ITS include Adaptive Traffic Control Systems (ATCS), which adjust signal timings based on real-time traffic conditions; public transport management systems, which optimize bus routes and schedules; electronic toll collection; intelligent parking guidance; and advanced driver assistance systems (ADAS). Beyond these operational efficiencies, ITS aims to significantly enhance road safety by providing timely warnings about hazards, managing incident responses, and enforcing traffic regulations through automated means. Environmentally, ITS contributes

by reducing idling times, promoting smoother traffic flow, and encouraging the adoption of sustainable transport modes. This paper will delve into a comprehensive analysis of the advantages that make ITS a compelling solution for modern cities, alongside the inherent disadvantages and challenges that must be critically addressed for its successful and equitable deployment.

2. Literature Review – Academic Perspectives on ITS

The academic inquiry into Intelligent Transport Systems has undergone a significant transformation from simple signal-timing studies in the late 20th century to complex, AI-driven socio-technical analyses in the 2020s. Modern literature primarily categorizes ITS as a pillar of the "Smart City" movement, emphasizing its role in achieving Sustainable Development Goals (SDGs).

2.1 The Evolution of Efficiency Models Early research by **Iqbal et al. (2018)** and **Pawlowska (2018)** focused on the quantitative gains of ITS, such as the reduction in Passenger Car Units (PCU) at bottlenecks. However, recent literature, including studies by **Yigitcanlar et al. (2025)**, has shifted the focus toward "Bayesian Deep Learning" and "Predictive Maintenance." These contemporary studies argue that the true advantage of ITS is not just managing existing traffic, but "forecasting" congestion before it occurs. The **PRISMA systematic review (2025)** identifies three recurring themes in global ITS research: reliability, environmental sustainability, and inter-modal coordination. Scholars agree that while hardware like sensors and cameras is foundational, the "intelligence" of the system now resides in big data analytics that integrate diverse modes of transport.

2.2 The "Disadvantage" Discourse: Cultural and Regulatory Gaps A significant branch of literature addresses the barriers to implementation, particularly in developing nations. **Dowling (2016)** and **Axsen & Sovacool (2019)** highlight the "human-AI cohabitation" challenge, noting that technology often fails when it clashes with local driving cultures. For instance, in Indian contexts, studies emphasize that western-designed ITS cannot be imported "as is" due to non-lane-based traffic and high pedestrian density. Furthermore, recent publications in the **MDPI Energy (2025)** series point to a growing "research gap" regarding the qualitative human experience. While quantitative data (carbon savings, time reduction) is abundant, ethnographic studies reveal a lack of understanding of how "digital divides" affect lower-income commuters who may not have access to real-time ITS apps.

2.3 Cybersecurity and Ethical Themes As connectivity increases, the literature has seen a surge in "Cyber-Urban" research. **Lamssaggad et al.** and recent contributors to **ResearchGate (2025)** warn that cybersecurity is no longer a technical disadvantage but a "reputational risk" for states. Scholars are increasingly concerned with "GPS spoofing" and "systemic vulnerability," arguing that the integration of V2X (Vehicle-to-Everything) communication creates a massive attack surface. In summary, the literature presents ITS as a "necessity for sustainable development" but warns that its success is contingent on local adaptation, robust legal frameworks for data privacy, and a shift toward "public-transit-centric" rather than "car-centric" technology.

3. Advantages:

Enhancing Efficiency and Reducing Congestion

One of the most compelling advantages of Intelligent Transport Systems (ITS) is its profound ability to enhance transportation efficiency and significantly reduce urban congestion. Traffic congestion is a pervasive issue in virtually every major city, leading to substantial economic losses, environmental degradation, and commuter frustration. ITS directly tackles this problem through several sophisticated mechanisms. Foremost among these are **Adaptive Traffic Control Systems (ATCS)**, which utilize an array of sensors, cameras, and data analytics to monitor traffic flow in real-time. Unlike traditional fixed-time signals, ATCS dynamically adjusts signal timings and phases based on actual demand, prioritizing heavily congested routes and optimizing overall network throughput. Case studies from cities like Singapore and London

have demonstrated ATCS achieving a 15-25% reduction in peak-hour delays and a 10-15% improvement in travel speeds.

Beyond intersections, ITS employs **Ramp Metering** on highways to regulate vehicle entry onto freeways, preventing gridlock and maintaining optimal speeds. **Variable Message Signs (VMS)** provide drivers with real-time information on traffic incidents, alternative routes, and estimated travel times, enabling them to make informed decisions and avoid bottlenecks. This proactive information dissemination reduces unexpected slowdowns and distributes traffic more evenly across the network. Furthermore, ITS revolutionizes **public transport management**. Through GPS tracking and real-time scheduling adjustments, public buses and trains can adhere more closely to schedules, improve reliability, and provide passengers with accurate arrival predictions via mobile apps. This enhanced reliability makes public transport a more attractive alternative to private vehicles, thereby reducing the overall number of cars on the road. The integration of **Intelligent Parking Guidance Systems** also plays a crucial role. By directing drivers to available parking spaces, these systems eliminate the "cruising for parking" phenomenon, which is a significant contributor to inner-city congestion and accounts for up to 30% of traffic in central business districts. Collectively, these ITS components transform chaotic urban traffic into a more predictable, fluid, and efficient system.

Boosting Safety and Environmental Sustainability

Beyond efficiency, Intelligent Transport Systems (ITS) offers substantial benefits in enhancing road safety and promoting environmental sustainability—two critical pillars of modern urban planning. Road accidents remain a leading cause of fatalities and injuries worldwide, and ITS provides a suite of tools designed to mitigate these risks. **Automatic Incident Detection (AID) systems**, utilizing roadside cameras and sensors, can detect accidents, breakdowns, or road hazards within seconds of their occurrence. This rapid detection facilitates quicker deployment of emergency services, minimizing response times and potentially saving lives. Furthermore, ITS enables **Emergency Vehicle Prioritization**, where ambulances, fire trucks, and police vehicles can be given priority at traffic signals, clearing their path to an emergency scene.

Intelligent Speed Adaptation (ISA) systems provide drivers with real-time feedback on speed limits, helping to prevent speeding-related accidents. In vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication scenarios, ITS can warn drivers of impending collisions, sudden braking by preceding vehicles, or dangerous road conditions, effectively acting as an invisible co-pilot. Traffic enforcement is also streamlined through ITS, with **Automated Red-Light and Speed Cameras** reducing violations and fostering greater adherence to road rules. These proactive and reactive safety measures collectively contribute to a measurable reduction in accident rates and associated casualties.

From an environmental perspective, ITS plays a crucial role in combating climate change and improving urban air quality. By reducing traffic congestion and promoting smoother traffic flow, ITS directly minimizes vehicle idling times. Idling engines are significant emitters of greenhouse gases (GHGs) like CO₂, as well as pollutants such as NO_x and particulate matter. Studies have shown that a 10% reduction in congestion can lead to a 5-10% decrease in fuel consumption and corresponding emissions. Furthermore, by making public transport more reliable and attractive, ITS encourages a modal shift away from private vehicles, which are generally more polluting. **Eco-driving advisories** provided through ITS can guide drivers to adopt fuel-efficient driving habits. The integration of ITS with **Electric Vehicle (EV) charging infrastructure management** also supports the transition to cleaner transportation. By contributing to fewer accidents and a cleaner environment, ITS significantly enhances the overall quality of life and public health within a city.

4. Disadvantages:

High Costs and Complex Implementation

Despite its numerous advantages, the widespread adoption of Intelligent Transport Systems (ITS) faces significant hurdles, primarily centered around its high costs and the inherent

complexities of implementation. The initial capital outlay required for a comprehensive ITS deployment is substantial. This includes the procurement and installation of sophisticated hardware such as traffic sensors, CCTV cameras, Variable Message Signs (VMS), communication networks (fiber optics, 5G infrastructure), and central control room equipment. For a medium-sized city, a full-scale ITS can cost tens to hundreds of millions of dollars, placing an enormous financial burden, especially on developing countries or municipalities with constrained budgets.

Beyond the initial investment, **maintenance and operational costs** are considerable. ITS infrastructure requires continuous monitoring, regular software updates, calibration of sensors, and replacement of outdated equipment. A dedicated team of highly skilled engineers and technicians is necessary to manage and maintain these complex systems 24/7. This ongoing expenditure can be a persistent drain on public resources. Furthermore, the **complexity of integrating diverse technologies** from various vendors is a significant challenge. Different ITS components often operate on proprietary platforms, making seamless data exchange and interoperability difficult to achieve. This can lead to system fragmentation, where different parts of the network do not communicate effectively, undermining the very premise of an "integrated" transport system.

The implementation process itself is fraught with difficulties. It often requires **extensive civil engineering work** for installing roadside infrastructure, leading to temporary disruptions in traffic flow and public inconvenience during construction phases. **Stakeholder coordination** is another monumental task, involving multiple government agencies (transport, police, urban planning), public transport operators, private technology providers, and utility companies. Achieving consensus and effective collaboration among these diverse entities can be prolonged and bureaucratic. Moreover, the **lack of standardized protocols** across cities and even within different departments of the same city can hinder efficient deployment and future scalability. Without careful planning and robust financial backing, the dream of an intelligent city can quickly become an unaffordable and unmanageable nightmare, leaving citizens disillusioned and public funds misspent.

Data Privacy, Security Risks, and Equity Concerns

The reliance of Intelligent Transport Systems (ITS) on extensive data collection and interconnected networks introduces critical disadvantages related to data privacy, cybersecurity, and societal equity. ITS platforms gather vast amounts of sensitive information, including vehicle movements, travel patterns, speed data, and potentially even individual behaviors. This raises profound **data privacy concerns**. Questions emerge regarding who owns this data, how it is stored, who has access to it, and for what purposes it can be used. Without stringent data protection regulations and robust anonymization techniques, there is a significant risk of surveillance, misuse of personal information, and potential profiling of citizens. Public apprehension about "Big Brother" monitoring can lead to distrust and resistance to ITS adoption.

Coupled with privacy issues are formidable **cybersecurity risks**. An interconnected ITS network, while efficient, presents a vast attack surface for malicious actors. A successful cyberattack could range from disrupting traffic signals (leading to chaos and accidents), manipulating public transport schedules, to even taking control of autonomous vehicles. Such breaches could have catastrophic consequences for public safety, economic activity, and national security. The integrity and reliability of ITS are entirely dependent on its security against hacking, denial-of-service attacks, and data corruption. Protecting these systems requires continuous investment in advanced cybersecurity measures, which adds another layer of cost and complexity.

Furthermore, ITS deployment can inadvertently exacerbate **societal equity concerns**. The benefits of ITS may not be distributed evenly across all segments of the urban population or all geographic areas. Disadvantaged neighborhoods might be overlooked for ITS infrastructure

upgrades, leading to a widening gap in mobility access and quality of life. The effectiveness of certain ITS features, such as real-time information apps, relies on citizens having access to smartphones and reliable internet connectivity, potentially marginalizing those without such resources. There is also a risk that ITS solutions might be designed primarily for private vehicle users, neglecting the specific needs of pedestrians, cyclists, or public transport users in underserved areas. Without a deliberate focus on inclusive design and equitable access, ITS risks creating a two-tiered transportation system that deepens existing social inequalities.

5. Implementation Challenges – Behavioral and Regulatory Hurdles

Beyond the financial and technical disadvantages, the successful deployment of Intelligent Transport Systems (ITS) in a city faces significant behavioral and regulatory hurdles that often prove more challenging than the technological aspects themselves. A core requirement for ITS effectiveness is **public acceptance and behavioral adaptation**. Drivers, pedestrians, and public transport users must understand how to interact with new systems, such as dynamic route guidance, smart parking applications, or real-time public transport information. Resistance to change, lack of awareness, or distrust in technology can render even the most sophisticated ITS ineffective. Comprehensive public education campaigns, user-friendly interfaces, and incentives for adoption are crucial but often underestimated in their complexity and cost. Without active participation from the citizenry, the full benefits of ITS cannot be realized.

From a regulatory standpoint, the existing legal and policy frameworks are frequently **outdated and ill-equipped** to handle the complexities introduced by ITS. Issues such as liability in autonomous vehicle accidents, data governance for V2V/V2I communication, and the legal basis for automated enforcement systems require entirely new legislation. Crafting these regulations is a time-consuming process that often lags behind technological advancements, creating a "regulatory void." Furthermore, **jurisdictional fragmentation** can impede seamless ITS deployment. A single metropolitan area might involve multiple municipal corporations, district authorities, and state transport departments, each with its own rules, funding priorities, and operational procedures. Achieving consistent policy implementation and data sharing across these different entities can be a bureaucratic nightmare, hindering the creation of a truly integrated urban transport network.

The need for **standardization** is also paramount. Without common protocols for communication, data formats, and equipment interfaces, different ITS components cannot "talk" to each other, leading to inefficient silos and vendor lock-in. Establishing national and international standards is a slow, consensus-driven process that can delay innovative deployments. Finally, the **ethical implications** of pervasive surveillance, algorithmic bias in traffic management (e.g., favoring certain demographics or routes), and the potential for job displacement in traditional transport sectors (e.g., manual traffic police, taxi drivers) must be carefully considered and addressed through proactive policy-making. These human and systemic challenges underscore that ITS implementation is as much a sociological and political endeavor as it is a technological one.

6. Conclusion and Future Outlook

Intelligent Transport Systems (ITS) stand at the forefront of urban innovation, offering transformative advantages for cities grappling with the complexities of modern mobility. The promise of ITS to significantly reduce congestion, improve travel times, enhance road safety, and foster environmental sustainability is undeniably compelling. Through real-time data analytics, adaptive control mechanisms, and improved public transport management, cities can achieve unprecedented levels of efficiency and responsiveness in their transportation networks. Features like Automatic Incident Detection and Emergency Vehicle Prioritization directly contribute to saving lives and mitigating the severe human and economic costs of accidents. Furthermore, by promoting smoother traffic flow, ITS plays a crucial role in reducing fuel

consumption and greenhouse gas emissions, aligning perfectly with global climate goals and enhancing urban air quality.

However, a balanced perspective necessitates a critical acknowledgment of ITS's inherent disadvantages and the formidable challenges associated with its deployment. The astronomical initial investment and ongoing maintenance costs can deter many cities, particularly in developing economies, creating a potential divide between technologically advanced and less-resourced urban centers. Beyond financial hurdles, the intricate reliance on data collection raises serious concerns about privacy and cybersecurity, demanding robust regulatory frameworks and continuous vigilance against potential threats. Equity issues, where the benefits of ITS might not reach all demographics or neighborhoods uniformly, must also be proactively addressed to ensure inclusive urban development. Finally, the success of ITS hinges not just on technological prowess but equally on public acceptance, behavioral adaptation, and the establishment of clear, updated regulatory and policy frameworks. The transition from traditional to intelligent transport requires significant changes in legislation, inter-agency coordination, and sustained public education.

Moving forward, the future of urban mobility will undoubtedly be shaped by ITS. To maximize its advantages and mitigate its disadvantages, cities must adopt a strategic, phased approach. This includes prioritizing cost-effective solutions, investing in resilient cybersecurity infrastructure, embedding privacy-by-design principles, and fostering inclusive deployment strategies that consider all users. The global experience suggests that ITS is not a panacea, but rather a powerful tool that, when implemented thoughtfully and equitably, can significantly enhance the quality of life in our increasingly complex urban environments. The critical challenge for cities will be to harness the immense potential of ITS while navigating its inherent complexities to build truly smart, safe, and sustainable transportation ecosystems for all.

Reference:

1. Dimitrakopoulos, G., & Demestichas, P. (2010). *Intelligent Transportation Systems*. IEEE Vehicular Technology Magazine, 5(1), 77-84.
2. Guerrero-Ibáñez, J., Zeadally, S., & Contreras-Castillo, J. (2018). *Sensor Technologies for Intelligent Transportation Systems*. Sensors, 18(4), 1212.
3. Barth, M., & Boriboonsomsin, K. (2008). *Real-World Carbon Dioxide Impacts of Traffic Congestion*. Transportation Research Record, 2058(1), 163-171.
4. Zhang, J., et al. (2011). *Data-Driven Intelligent Transportation Systems: A Survey*. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1624-1639.
5. Papadimitratos, P., et al. (2008). *Vehicular Communication Systems: The Link to Security and Privacy*. IEEE Communications Magazine, 46(10), 41-47.
6. Ghani, A., et al. (2019). *Cyber Security Framework for Intelligent Transportation Systems*. 2019 IEEE International Conference on Smart Instrumentation, Measurement and Applications.
7. Talebpour, A., & Mahmassani, H. S. (2016). *Influence of Connected and Autonomous Vehicles on Traffic Flow Stability and Capacity*. Transportation Research Part C: Emerging Technologies, 71, 143-163.
8. Sussman, J. M. (2005). *Perspectives on Intelligent Transportation Systems (ITS)*. Springer Science & Business Media.