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Abstract: It Optimization theory is a standout amongst the hugest and captivating branches of 

connected mathematics. It is formally worried about the procedure of maximization or 

minimization of a coveted capacity while fulfilling the overall constraints. This has caught 

practically whole domain of human advance. Truth be told, nature has a galore of circumstances 

where optimum system status are produced. In metals and alloys, the atoms take places of 

minimum vitality to form unit cells. These unit cells characterize crystalline structure of 

materials. Genetic mutation for survival is another case of nature's optimization procedure. Like 

nature, human organizations have additionally worked hard towards discovering perfection. 

Arrangements of their problems have been looked for the most part on the premise of 

involvement and judgment. Be that as it may, in the world of today, the expanded rivalry and 

buyer demands regularly require optimum arrangements instead of simply doable arrangements. 

It has been encountered that optimization of design process spares cash for a organization by 

essentially decreasing the improvement time. In this manner the theory of optimization manages 

picking the best option among a few choices in the feeling of given capacity with minimum 

conceivable assets. This creates a class of problems named as mathematical programming 

problems. The optimum looking for techniques are known as mathematical programming 

techniques and by and large concentrated as a piece of operations research.  
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1.1 Introduction 
In this study, Optimization theory is a standout amongst the hugest and captivating branches 

of connected mathematics. It is formally worried about the procedure of maximization or 

minimization of a coveted capacity while fulfilling the overall constraints. This has caught 

practically whole domain of human advance. Truth be told, nature has a galore of circumstances 

where optimum system status are produced. In metals and alloys, the atoms take places of 

minimum vitality to form unit cells. These unit cells characterize crystalline structure of 

materials. Genetic mutation for survival is another case of nature's optimization procedure. 

Like nature, human organizations have additionally worked hard towards discovering 

perfection. Arrangements of their problems have been looked for the most part on the premise 

of involvement and judgment. Be that as it may, in the world of today, the expanded rivalry 

and buyer demands regularly require optimum arrangements instead of simply doable 

arrangements.  

Mathematical programming possessed a status of logical field in its own particular right amid 

late 1940's and from that point forward it has experienced gigantic advancement. It is presently 

considered as a standout amongst the most energetic and energizing branches of modem 

mathematics having broad applications in different settings, for example, designing, financial 

matters and common sciences. An exceptionally regular case of a mathematical programming 

problem shows up in discovering minimum weight design of structure subject to constraints on 

stress and deflection.  

The form of a mathematical programming problem is as follows, 

(MP): Optimize (minimize/maximize)f(x). 

Subject to 

g i (x)≤0,i=1,2,3,…,m, 

hj(x)=0,j=1,2,3,….,k, 

x ϵ X 
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Here the function f and each fj and hj are genuine esteemed capacities characterized on n 

dimensional Euclidean space Rn and X ⊆Rn. This is alluded to as the general mathematical 

programming problem. The constraints, gi(x) ≤0, i = 1, 2…, m are alluded to as to as inequality 

constraints, the constraints hj(x) = 0, j = 1, 2... k are called fairness constraints. The 

incorporation x ϵ  X is known as a conceptual constraints. On the off chance that the goal and 

imperative capacities are differentiable then we portray the above problem as differentiable 

program. On the off chance that the goal and the inequality constraints are relative capacity and 

X is a convex set, at that point the above problem is known as a convex programming problem. 

1.2 PRELIMINARIES 

1.2.1 Notations 

Rn = n-dimensional Euclidean space, 

 Rn = The non-negative orthant in Rn, 

MT = Transpose of the matrix M, 

 Let θ be a numerical function defined on an open set ɽ in Rn, then 

∇ θ ( X) denotes the gradient of θ at   𝑥̅ , that is 

 
Let ψ a real valued twice continuously differentiate function defined on an open set contained 

in Rnx Rm. Then ∇x ψ (x, y) and ∇y ψ f( x, y) denote the gradient (column) vector of f with to x 

and y respectively, 

 

 
Further ∇2

xx( 𝑥̅𝑦̅   ) and ∇2
xy ψ(x,y) denote respectively the (n x n) and (n x m) matrices of 

second order partial derivative i.e 

 

 
The symbols and ∇2 

y y ψ (𝑥̅𝑦̅ )are characterized correspondingly. Be that as it may, at certain 

places, to make the importance of the setting all the more clear, the subscripts of∇and ∇2 are 

brought as the variable as for which the function is being separated. 

1.2.2 Definitions 

Definition 1.1 Let X ⊆c Rn be an open and convex set and f : X → R be differentiable. Then 

we define f to be. 

1. Convex, if for all x1, x2  ϵ X,  

          f(x1) - f(x2 ) ≥ (x1 – x2 )
T ∇f(X2).

 

2. Strictly convex, if for all x1, x2 ϵ X and x1  ≠ x2 

         f(x 1)-f(x2 )> (x1-x2 )
T∇f(x2). 

3. Quasiconvex, if for all x1 ,x2 ϵ X,  

         f(x1) ≤ f(x2 ) => (x1- x2 )
T ∇ f(X2 ) ≤ 0. 
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4. Pseudoconvex, if for all x1 ,x2 ϵ X,  

         (x1 – x2 )
T∇f(x2 ) > 0 => f(x1) > f(x2 ). 

5. Strictly Pseudoconvex, if for all x1, x2 ϵ X x1 ≠x2 

(x1 -,x2)∇(x2)≥0⟹→f(x1)˃f(x2). 

6. Invex, if there exists a vector function ƞ : Rn x Rn →Rn 

Such that for all x1,x2 ϵ X, f(x1) – f(x2) ≥ ƞ (x1,x2)
T ∇f(x2). 

7. Pseudoinvex, if there exist a vector function ƞ : R n x Rn →Rn  

such that for allx1x2 ϵ X,(x1,x2)
T∇ f(x2) ≥ 0⟹ f(x1) ≥ f(x2) 

8. Quasiinvex, if there exist a vector function ƞ : Rn x R n →Rn  

such that for all x1 x2 ϵ X, f(x1) ≤ f(x2) ⟹→ ƞ (x1,x2)
T∇ f(x2) ≤ 0. 

9.Second order convex (Bonvex), if for al x1,x2 ϵ Rn. f(x1) - (x2) ≥ (x1- x2)
T∇2 f(x2 )p -

1

2
 (p T ∇ 

2 f(x2 )p). 

10. Second order pseudoconvex (Pseudobonbex), if for all x1,x2 ϵ X, p ϵ R n 

(x1 – x2 )
T ∇2  f(x2) + (x1 –x2) 

T ∇2 f (x2)p ≥ 0 ⟹→ f(x1)  f(x2) -  (p T ∇2 f(x2)p). 

Unmistakably, a differentiable convex, pseudoconvex, quasiconvex function is invex, 

pseudoinvex or quasiinvex separately with ƞ (x1 , x2 ) = (x1 – x2 ). Promote we characterize f to 

be concave. Strictly concave, quasconcave, pseudoconcave, strictly pseudocovex, on X 

according as - f is convex, strictly convex, quasi convex, pseudo convex, strictly pseudo 

convex. 

Definition 1.2; Let f : Rn → R be a convex function, then a sub-gradient of f at point X ϵ Rn is 

a vector ᶓ ϵ Rn satisfying. 

 
Definition 1.3: The set of all sub gradients of f at x ϵ Rn is called sub-differential of f at X is 

denoted by ∂ f(x). 

Definition 1.4: Let Гbe a nonempty of Rn. 

(i) The set Г  is called a cone if  

x ϵ, Г  λ ≥  0 = > λ x ϵ .Г  

(ii) A cone Г  ⊆  Rn is convex if 

 x + y ϵ , Г for all x,y ϵ . Г 

(iii) Let Г ⊆c Rn be a convex cone. Then Г * defined as  

Г * = { z ϵ Rn : zT X ≤ 0, for all x ϵ Г is called the polar cone of Г. 

Definition 1.5: Let X ⊆ Rn and Y ⊆ Rm be convex subsets and g: X x Y→R. Then the function 

g is said to be convex - concave on X x Y if it is convex in ‘x’ for each fixedy ϵ Y and concave 

in y for each fixed x ϵ X 

There are number of constraint qualifications, which are required to be fulfilled by the 

constraints, while building up the fundamental optimality criteria to guarantee that specific 

Lagrange multipliers exist and are non-zero. Here we portray just four of them for fulfillment 

of ideas.  

(i)Slater's Constraint Qualification: Let X° is a convex set in Rn. The m-dimensional convex 

vector function g on X° which characterizes the convex achievable region 

X = {x : x ϵ X  ͦ g(x) ≤ 0} is said to fulfill Slater's constraint qualification on 𝑋0 if there exists 

a 𝑥̅ ϵ X with the end goal that g(𝑥̅) < 0.  

(ii) The Kuhn-Tucker's Constraint Qualification: Let X° be an open set in Rn, Let g be a m-

dimensional vector function defined on X°and let X = {x: x ϵ 𝑥0 g(x)  ≤ 0}. At that point the 

constraints are said to fulfill the Kuhn-Tucker's Constraint. Qualification at 𝑥̅  ϵ X if g is 

differentiable at 𝑥̅ and if  
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(iii) The reverse convex constraint qualification: Let X n be an open set in R n, let g be m-

dimensional vector function defined on x0, and let X = {x| x ϵ X° , g(x) ≤ 0 }, g is said to fulfill 

the reverse convex constraint qualification at 𝑥̅ϵ X, if g is differentiable at𝑥̅, and if for each is 

i ϵ I either g, is concave at 𝑥̅or gi is linear on Rn , where I = {i | gi ( 𝑥̅) = 0}.  

Linear independence constraint qualification: The condition that the vectors ∇ gi (x0)........,∇ 

gm(x0) is linearly independent is often alluded to as linear independence constraint 

qualification.  

REVIEW OF RELATED WORK  
1.3.1 Duality in Differentiable Mathematical Programming  

Let f: Rn → R and hj : R
n → R , (j = 1,2,…m)then consider the nonlinear programming issue:  

(P): Min f(x)  

subject to,  

hj (x ) ≤ 0 ,(j = l,2 ,...,m ).  

For λ ϵ Rm the Lagrangian dual for issue (P) is defined as  

 
That is, 

(LD): M inf(u) + λ T h(u) 

Subject to, 

 
In the event that all the function f and hj : (j = 1,2,. ..,m) are the differentiable convex functions, 

at that point the issue (LD) is comparable to the following issue:  

(WD): M ax f(x) + λ Th (x)  

Subject to  

V (f(x) + λ Th(x)) = 0, λ ≥ 0, λ ϵ R m. 

This is nothing yet the Wolfe sort dual for the issue (P). Mangasaria explained by implies of a 

case that certain duality theorems may not be legitimate if the goal or the constraint function is 

a summed up convex function. This spurred Mond and Weir to introduce an alternate dual for 

(P) as 

(MWD): Maxf(x) 
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Subject to 

∇(f(x) + λTh(x)) = 0, 

λTh(x) ≥ 0,  

λ ≥ 0, λ ϵ Rm, 

Also, they demonstrated different duality hypotheses under pseudoconvexity off and 

quasiconvexity  λTh of for all doable arrangement of (P) and (M-WD). Later Weir and Mond 

inferred adequacy of Fritz John optimality criteria under pseudoconvexity of the goal and 

quasiconvexity or semi-strict convexity of constraint functions. They planned the 

accompanying double utilizing the Fritz John optimality conditions rather of the Karush-Kuhn 

- Tucker optimality conditions and demonstrated different duality hypotheses in this way the 

necessity of constraint qualification is wiped out. 

(F,D): Maximize f(x) 

subject to 

λ0∇f(x) + ∇λTh(x) = 0 

λTh(x) ≥ 0 

( λ0,λ ) ≥ 0 , ( λ0,λ)≠ 0 . 

1.5 Conclusions 
The results, obtained in this thesis are presented in chapters 2-7, are briefly summarized as 

follows: 

First section part is separated in to two segments. In Section 2.1 we consider the following non 

differentiable nonlinear problem with help functions: 

(NP) : Minimize f (x) + s (x| C) 

Subject to 

gj(x) + s ( x | D j)≤ 0, j = l , 2 .....,m. 

w h e r e 

(i) for the n-dimensional Euclidean space Rn, f; Rn→ R and g1 ,: R
n →R, (j = 1, 2 ,…, m), are 

continuously differentiable, and 

(ii) s (.| C) and s (.| Dj), (j = 1, 2,…, m) are respectively the support functions of 

convex compact sets C and Dj, (j = 1, 2, ..., m) in Rn. 

For this problem, we present the following mixed type dual (Mix D) to (N P): 
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