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INTRODUCTION 

We provide a novel Bayesian modelling framework that may be used for both functional and 

time series data. Even though it has a wide range of applications, the methodology focuses on 

the difficult cases in which 

 (1) Functional data demonstrate additional dependence, such as time dependence or 

contemporaneous dependence;  

(2) Functional or time series data demonstrate local features, such as jumps or rapidly changing 

smoothness; and  

(3) A time series of functional data is observed sparsely or irregularly with non-negligible 

measurement error.  

The use of the dynamic linear model (DLM) framework in novel settings to build highly 

effective Gibbs sampling algorithms is a feature that is common to all of the suggested 

approaches. This feature serves as a unifying factor. In order to model dependent functional 

data, we adapt DLMs that were designed for modelling multivariate time series data to the 

functional data situation. We then establish a smooth, time-invariant functional foundation for 

the functional observations. The model that was suggested allows for flexible modelling of 

complicated dependency structures among the functional data. These structures include 

temporal dependence, contemporaneous dependence, stochastic volatility, and covariates, 

among others. We apply the model to the data of yield curves for many economies as well as 

the local field potential of the brains of rats. We present an entirely new family of dynamic 

shrinkage processes as a means of doing locally adaptive Bayesian time series and regression 

analysis. We enable the local scale parameters to rely on the history of the shrinkage process 

in order to extend a large class of well-known global-local shrinkage priors, such as the 

horseshoe prior, to the dynamic setting. This allows us to make the priors applicable to a wider 

range of shrinkage problems. We show that the resultant processes inherit beneficial shrinkage 

behaviour from the non-dynamic analogize, but they also give extra locally adaptive shrinkage 

qualities. This is something that we verify. Using extensive simulations, a Bayesian trend 

filtering model for irregular curve-fitting of CPU usage data, and an adaptive time-varying 

parameter regression model, which we employ to study the dynamic relevance of the factors in 

the Fama-French asset pricing model, we demonstrate the substantial empirical gains that can 

be obtained from the proposed dynamic shrinkage processes. These gains can be attributed to 

the proposed dynamic shrinkage processes. Finally, we present a hierarchical functional 

autoregressive (FAR) model with Gaussian process innovations for the forecasting and 

inference of sparsely or irregularly sampled functional time series data. This model is intended 

to be used with sparsely sampled or irregularly sampled data. We demonstrate that the 

suggested model maintains its validity when the Gaussian assumption is relaxed by proving 

that its finite-sample forecasting and interpolation optimality characteristics are optimal. We 

put the suggested methodologies to use in order to provide forecasts of daily nominal and real 

yield curves that are very competitive.  The Bayesian modelling approach is shown here for 

both functional and time series data. The approaches have a wide range of applications for 

(dependent) functional and time series data, but the following difficult scenarios, for which the 

existing methods are inadequate, are the primary emphasis of this chapter.  

Uses of DLM 

The use of the dynamic linear model (DLM) framework in new settings to generate 

interpretable models and computationally efficient MCMC sampling algorithms is a unifying 

aspect of the suggested methodologies. This framework is used to construct interpretable 

models and MCMC sampling algorithms. In particular, we create very efficient Gibbs sampling 

algorithms that rely upon previously developed DLM sampling components for large blocks of 

parameters (for example, Rue, 2001; Durbin and Koopman, 2002). These methods may be 

found in Rue, 2001; Durbin and Koopman, 2002. Novel applications of DLMs include dynamic 

shrinkage processes, functional autoregressive models, functional dynamic component models, 
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and Bayesian trend filtering models. Importantly, the Bayesian framework allows for joint 

estimate of the parameters of model 1 and gives accurate inference (up to MCMC error) on 

individual parameters. This is a significant benefit. Important applications such as multi-

economy interest rate modelling, nominal and real yield curve forecasting, dynamic extensions 

of the Fama-French asset pricing model, irregular curve-fitting of CPU usage data, and local 

field potential brain signals in rats served as inspiration for the proposed methodology. The 

approaches are tested by extensive simulations, and the findings are favourable when compared 

to alternative estimators that are considered to be state-of-the-art. We extend DLMs for 

multivariate time series to the functional data context in Chapter 2, wherein we offer a Bayesian 

model for multivariate, dependent functional data. In this model, we include data that are 

dependent on many variables. Additionally, Bayesian spline theory is developed by us within 

the context of a more generalised restricted optimisation framework. The approaches that have 

been developed locate a smooth and interpretable time-invariant functional foundation for the 

functional data. We analyse local field potential brain signals in rats, for which we build a 

multivariate functional time series approach for multivariate time-frequency analysis. We also 

utilise the technology to explore the interactions of multieconomy yield curves during the 

current global crisis. In Chapter 3, we provide an original class of dynamic shrinkage processes 

for the Bayesian analysis of time series and regression data. We enable the local scale 

parameters to rely on the history of the shrinkage process in order to extend a large class of 

well-known global-local shrinkage priors, such as the horseshoe prior, to the dynamic setting. 

This allows us to make the priors applicable to a wider range of shrinkage problems. We show 

that the resultant processes inherit beneficial shrinkage behaviour from the non-dynamic 

analogize, but they also give extra locally adaptive shrinkage qualities. This is something that 

we verify. The dynamic shrinkage processes that have been presented have a wide range of 

potential applications, in particular within the family of dynamic linear models. We construct 

a very effective Gibbs sampling algorithm by representing dynamic shrinkage processes on the 

log scale. This allows us to adopt successful approaches from stochastic volatility modelling. 

Additionally, we offer a Polya-Gamma scale' mixed representation. We use the proposed 

processes to produce superior Bayesian trend filtering estimates and posterior credible intervals 

for irregular curve-fitting of minute-by-minute Twitter CPU usage data. Additionally, we 

develop an adaptive time-varying parameter regression model in order to evaluate the efficacy 

of the Fama-French five-factor asset pricing model with momentum added as a sixth factor. In 

Chapter 4, we construct a hierarchical Gaussian process model for the purpose of making 

predictions and drawing inferences from functional time series data. Our methodology, in 

contrast to other approaches, is particularly useful for curves that have been sampled in an 

insufficient or inconsistent manner, as well as for curves that have been sampled with a 

significant amount of measurement error. The latent process is dynamically represented as a 

functional auto regression (FAR) with Gaussian process innovations, with extensions for 

FAR(p) models with model averaging across the lag p. p is the number of lags used in the 

analysis. We offer a completely nonparametric dynamic functional factor model for the 

dynamic innovation process. This model has greater applicability and enhanced computing 

efficiency in comparison to the more traditional Gaussian process models. We demonstrate that 

the suggested model maintains its validity when the Gaussian assumption is relaxed by proving 

that its finite-sample forecasting and interpolation optimality characteristics are optimal. 

Extensive simulations show that the autoregressive surface offers significant gains in terms of 

both its efficacy as a forecasting tool and its ability to recover from past errors in comparison 

to other approaches, particularly when used to sparse designs. We put the suggested strategies 

to use by utilising daily data from the United States to anticipate nominal and real yield curves. 

Although real yields are seen less frequently than nominal yields, the suggested strategies are 

very competitive in both the laboratory and the field contexts. 

Historical Background of DLM 

The hierarchical dynamic linear model (DLM) architecture that Gamerman and Migon (1993) 

and West and Harrison (1997) developed for modelling multivariate time series was extended 

to the functional data context so that it could be used to study MFTS. We extend Bayesian 
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spline theory to a more broad restricted optimisation framework, which we then use for the 

purpose of parameter identifiability. This results in function estimates that are smooth, flexible, 

and optimum. Our requirements are made explicit in the posterior distribution by the use of 

proper conditioning of the typical Bayesian spline posterior distribution, and the mean of the 

posterior distribution that corresponds to our constraints is the solution to an appropriate 

optimisation problem. To collect samples from the joint posterior distribution, which enables 

precise inference for any parameters of interest (up to MCMC error), we develop an efficient 

Gibbs sampler and use these samples to test various hypotheses. The hierarchical Bayesian 

multivariate functional dynamic linear model that was suggested has higher application and 

utility than other models that are comparable. It is able to include application-specific prior 

information and allows flexible modelling of complicated dependency structures among the 

functional observations, such as temporal dependence, contemporaneous dependence, 

stochastic volatility, covariates, and change points. 

DLM Model 

Assuming  let Zt be the mt × M ncidence matrix that identifies the observations points 

observed at time  The hierarchical model may be 

rewritten as a dynamic linear model (DLM; West and Harrison, 1997) in t: 

 

where  and 

 Model can be extended for multiple lags to the FAR(p) model by 

replacing the second level with  for  The 

DLM formulation of the FAR(p) is helpful for MCMC sampling since efficient samplers exist 

for the vector-valued state variables, t (for example, Durbin and Koopman, 2002). This makes 

the DLM formulation of the FAR(p) beneficial. The Gibbs sampling technique that was 

presented for model  is a mild expansion of the classic DLM samplers. It samples the state 

vectors t, the measurement error variance 2 v, the innovation covariance K, and the unknown 

evolution matrix in an iterative fashion. Additionally, the DLM makes it easier to estimate and 

predict non-Bayesian parameters. One example of this is an EM approach for estimating the 

latent state variables t with the parameters 2, K, and (for example, Cressie and Wikle, 2011). 

When the auto covariance features of each model are taken into consideration, greater light is 

shown on the relationship that exists between the hierarchical FAR model and the DLM. 

Recalling   be the lag-` 

autocovariance function of {Yt}, which is time-invariant under stationary of {Yt}. Under 

model and assuming stationarity of {Yt}, the lag-1 autocovariance function is equivalently 

 

 we 

have the more general recursion  from which it is clear 

that each C is completely determined by the pair Now let  be the lag-` auto 

covariance matrix for the vector valued time series {µt} in Equation. Under stationarity of 

 the lag-1 auto covariance matrix of  

 notably, the relationship 

 is an approximation to the continuous version, 
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 using the same quadrature approximation as in. More 

generally, the matrix recursion  is a quadrature-based approximation to the 

continuous recursion,   Therefore, the 

evolution matrix ΨQ in the DLM induces a discrete approximation to the autocovariance 

structure in the hierarchical FAR model. 

Conclusions 

The evolution equation of resembles a VAR(1) on  but diverges 

significantly from a conventional VAR on YouTube in a number of significant respects. To 

begin, a well-defined fit of a VAR to yt can only be achieved if both the dimension mt and the 

observation points Tt remain constant across time. Only then can the fit be considered accurate. 

If this is not the case, then imputation is something that must be done. The conditional mean 

function and the conditional covariance function of the relevant Gaussian process are used in 

our technique, which allows for automated and efficient imputation of missing data. Second, 

since the observations are functional in character, it is quite probable that the components of yt 

are significantly connected with one another. The presence of significant collinearity in VARs 

may lead to overfitting, which in turn can have a negative impact on predicting and inference. 

Because the kernel function in our model is regularised with the use of a smoothness prior, we 

are able to reduce the negative impact that collinearity has on the estimate of. The smoothness 

prior on is an unconventional method of regularisation for VARs, but it is suitable for use in 

this environment. In the end, the quadrature matrix, Q, is included into the VAR coefficient 

matrix, Q, which reweights the vector t1 based on the information obtained from the evaluation 

points Te. This reweighting takes into account not just the vector values represented by t, but 

also the fact that the components of t correspond to ordered elements of Te, which do not 

necessarily have to be evenly spread out throughout the vector. The results of the simulations 

in Section reveal that our method offers significant gains in terms of its ability to predict in 

comparison to a VAR on yt. 

The essential conclusions for vector-valued DLMs are expanded upon in the proof of Theorem 

, which may be found in the Appendix. The best linear predictors of Theorem minimise the risk 

R(, d) = supTe Re(, d) among all linear estimators, where the sup is taken across all finite Te 

T. This is equal to saying that the best linear predictors minimise the risk R(, d) = supTe Re(, 

d). The forecasting distributions [yt+h |Dt, ] and [t+h |Dt, ] for h > 0 are the most helpful 

examples of [|Y, ] in Theorem. Other helpful examples include smoothing distributions [t |DT, 

] and filtering distributions [t |Dt, ] for t = 1,..., T. The validity of Theorem is contingent on the 

observation points To under the only assumption that Zt is already established. In a broad sense, 

we will use the assumption that To Te, which means that Zt is an incidence matrix and is thus 

known. The proof of Theorem does not depend on To being arbitrarily dense in T, hence it may 

be used to designs that are either sparse or dense. For the purpose of implementation, we first 

calculate the appropriate expectations while the Gibbs sampling procedure is running (please 

see Appendix C), and then we take an average across the Gibbs sample of. Cressie and Wikle 

(2011) suggest that an EM method may be used instead to create an expectation estimate 

(Cressie and Wikle, 2011). 
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