
International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

 Volume-15, Issue-II 268

Study on the Parameters Related to Simulator for software

maintainability
Kavita Vijaysingh Tiwari, Research Scholar, Department of Computer Science, Monad University, Hapur, Uttar Pradesh

(India)

Dr. Kailash Kumar Assistant Professor, Department of Computer Science, Monad University, Hapur, Uttar Pradesh (India)

Abstract:
 Using this analysis one can generate a new sequence of random but related states which

look similar to the original. This Markov process is stochastic in nature which has the

property that the probability of transition from a given state to any future state depends only

on the present state and not on the manner in which it was reached. The simulator is

developed in this chapter to compute n-step e steady state stationary transition probabilities

for various state of the software under maintenance. The one step transition probabilities for

five initial states of deterioration of the software under maintenance. The transition

probabilities are chosen according to Markovian property i.e. the sum of the probabilities of

going from one state to all other state is one. The operating efficiency of the software is

supposed to be 0.95, 0.87, 0.79, 0.75 and 0.70. The steady state transition probabilities for

each state denoted by 0,1,2,3 and 4 are shown. This simulator is executed for a maximum

value of n=100 or till the system reaches a steady state while calculating n-step probabilities

successively.
Keywords: Software, Simulators, Quality, Maintance

Introduction: Software is developed, maintained, and used by people in a wide variety of

situations. Students create software in their classes, enthusiasts become members of open-

source development teams, and professionals develop software for diverse business fields

from finance to aerospace. All these individual groups will have to address quality

problems that arise in the software they are working with. This chapter will provide

definitions for terminology and discuss the source of software errors and the choice of

different software engineering practices depending on an organization’s sector of business.

Every profession has a body of knowledge made up of generally accepted principles. In

order to obtain more specific knowledge about a profession, one must either: (a) have

completed a recognized curriculum or (b) have experience in the domain. For most

software engineers, software quality knowledge and expertise is acquired in a hands-on

fashion in various organizations. The Guide to the Software Engineering Body of

Knowledge constitutes the first international consensus developed on the fundamental

knowledge required by all software engineers.

 According to IEEE Standard Glossary of Software Engineering Terminology,

maintainability is the ease with which a software system or component can be modified to

correct faults, improve performance or other attributes, or adapt to a changed environment

[IEE1990]. Maintainability can also be defined as the probability that a specified

maintenance action on a specified item can be successfully performed (putting the item into a

specified state) within a specified time interval by personnel of specified characteristics using

specified tools and procedures [JAR1990].

 Software under maintenance consists of finite number of states. The states have a

specific operating efficiency. The maintenance process can bring the software from one state

to another within a specific time slot allotted to the software maintenance engineers. The

software fails or reaches its maximum efficiency depends upon the nature of maintenance

problems. Here an attempt has been made to develop a simulator to compute n–step transition

probabilities successfully for software under maintenance until it reaches steady state. This

process is very much depicted by Markov analysis [GIL2004].

 The purpose of software maintenance is to assure the quality of performance of the

respective software. But design errors, undiscovered faults and installing new applications

can cause the software degradation [RIK1999]. There are two aspects of maintainability:

serviceability (the probability of returning the item to normal service) and repair ability (the

probability of repairing the actual or impending fault). Generally, software maintainability is

termed as repair ability. In software engineering, the main emphasis of maintenance is change

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

 Volume-15, Issue-II 269

or the modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment.

 Rajiv D. et al. [RAJ1994] estimated the impact of development activities in a more

practical time frame. They developed a two-stage model in which software complexity is a

key intermediate variable that links design and development decisions to their downstream

effects on software maintenance. They analyzed the data collected from various software

enhancement projects and software applications in a large IBM COBOL environment.

Results indicated that the use of a code generator in development is associated with increased

software complexity and software enhancement project effort. The use of packaged software

is associated with decreased software complexity and software enhancement effort. Pfleeger

[PFL1998] describes maintainability as the probability that a maintenance activity can be

carried out within a stated time interval, it ranges from 0 to Rikard Land [RIK1999]

investigates how the maintainability of a piece of software changes as time passes and it is

being maintained by performing measurements on industrial systems. Niessink F. [NIE2001]

discussed the perspectives of improving software maintenance and described software

maintenance process improvement from two perspectives: measurement-based improvement

and maturity-based improvement.

 Y. Kataoka et al. [YKA2002] discussed program refactoring as a technique to

enhance the maintainability of a program. A quantitative method was proposed to measure

the maintainability enhancement effect of program refactoring. Coupling metrics were used

to evaluate the refactoring effect. By comparing the coupling before and after the refactoring,

the degree of maintainability enhancement was evaluated. The results showed that the

method was really effective to quantify the refactoring effect. The software to be maintained

may be considered to be in a number of states of deterioration. The maintenance (repair)

work of the software is inspected after a regular interval of time, say, weekly and is classified

as being in one of the states. Each state is considered as functionally independent. The

evaluation is carried out using Markov analysis which looks at a sequence of states and

analyses the tendency of one state to be followed by another, after each repair the software

restored to a state having ‘increased’ operating efficiency. Using this analysis one can

generate a new sequence of random but related states which look similar to the original. This

Markov process is stochastic in nature which has the property that the probability of

transition from a given state to any future state depends only on the present state and not on

the manner in which it was reached.

If t0 < t11 < t2 <………< tn represents the points in time scale then the family of random

variables {X(tn)} is said to be a Markov process provided it holds the Markovian property :

 P{X (tn) = xn|X (tn-1) = xn - 1, X (t0) = x0} = P{ X (tn) = xn| X(tn-1) = xn-1}

 V X (t0), X (t1),….,X(tn)

Markov process is a sequence of ‘n’ experiments in which each experiments has ‘n’ possible

outcomes x1, x2,……,xn. Each individual outcome is called a state and probability (that a

particular outcome occurs) depends only on the probability of the outcome of the preceding

experiment. The simplest of the Markov processes is discrete and constant over time. It is

used when the sequence of experiment is completely described in terms of its states (possible

outcomes). There is a finite set of states numbered 0, 1, 2, 3, ….n and this process can be

only in one state at a prescribed time. The system is said to be discrete in time if it is

examined at regular intervals.

The probability of moving from one state to another or remaining in the same state during a

single time period is called transition probability.

 P xn-1, xn = P{ X(tn)= xn | X(tn-1)= xn-1}

Mathematically, the probability is called the transition probability. This represents the

conditional probability of the system which is now in state xn at time tn provided that it was

previously in state xn-1 at time tn-1. This probability is known as transition probability

because it describes the system during the time interval (tn-1, tn). Since each time a new result

or outcome occurs, the process is said to have stepped or incremented one step. Each step

represents a time period or any other condition which would result in another possible

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

 Volume-15, Issue-II 270

outcome. The symbol n is used to indicate the number of steps or increments.

The transition probability can be arranged in a square matrix form denoted by P with

elements pij

Such that ∑ pij =1; i=0, 1, 2, 3…..n and 0≤ pij ≤1

 j=0

n-step stationary transition probabilities

The n-step stationary transition probabilities are defined to be

 prs
(n) = P(Xi+n = s|Xi = r) = P(Xn = s|X0 = r)

 prs
(n)≥0 for all states r and s; n=1, 2,.…

 n

 ∑ prs
(n) = 1 for all states r; n=1, 2,….

 s = 0

The above equation assumes that there are N+ 1 possible states. Note that if the system is

currently in state r, it must be in some state n steps from now.

Thus n

 ∑ prs
(n) = 1

 s = 0

In general, the n-step stationary transition probabilities can be calculated as follows:

 n

 prs
(n) = ∑ prj* pjs

(n-1)

 j=0

Where the possible states are 1, 2, ……, n. That is, the probability of going from state r to

state s in n steps is the probability of going from state r to state j in one step, times the

probability of going from state j to state s in n-1 steps, summed over all j=0, 1, 2,……, n.

Steady state stationary transition probabilities

Suppose a given system has N+ 1 states, 0, 1, 2... N. if for some value of n

 prs
(n) > 0 for r = 0, 1, 2, ……, N

 s = 0, 1, 2, ….…, N

 and if

 prr > 0 for r = 0, 1, 2, ….., N

 then

 lim prs
(n) = as for s = 0, 1, 2,….., N

 n→∞

The quantity as is the steady state stationary transition probability of being in state s after a

large number of steps. That is to say, if every state can eventually be reached from every

other state (possibly in a large number of steps), and if the system can be in any given state

on two consecutive steps, then the probability of being in any given state after a large number

of steps is a constant. This constant is called the steady state probability for the given state.

The N+1 steady state probabilities satisfy the N+2 linear steady state equations
 N

 as = ∑ ar*prs for s=0, 1, 2,….., N

 r = 0

 N

 ∑ as = 1

 s = 0

Thus, if one forms a system of N+1 linear equations in N+ 1 unknown using above

equation, the solution of the system will be the N+1 steady state probabilities.

PROPOSED MODEL

The proposed model assumes that ‘maintainability’ of the software means a quantitative

characteristic called ‘operating efficiency’ , which from user point of view is maximum in

the beginning and deteriorates progressively with the passage of time in view of ever

increasing user expectations that evolve constantly over time.

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

 Volume-15, Issue-II 271

Software under consideration for maintenance must be in one and only one state of

deterioration at specific point of time. The software that is currently in state ‘r’ must be in

some state ‘n’ steps from now. Under fairly general conditions, if the one-step stationary

transition probabilities are available, one can determine n-step stationary transition

probabilities until the software reaches steady state.

The simulator developed in this chapter computes the n-step probabilities successively until

the system reaches steady state or until n = 100, which ever occurs first. If steady state is not

reached, a message stating such is printed. The simulator is developed using high level

programming language.

Assumptions

• The software to be maintained may be considered in one of the five states of

deterioration. Say Xi = {0, 1, 2, 3, 4} represents the state of deterioration of the

software at the end of ith week.

• The operating efficiency is simulated for each state using Bux Muller transformation.

e.g. 95% to 100% for the state=0 and below 70% for state =4 and in-between for other

states.

• The one-step stationary transition probabilities may be given or may be determined

from the past data.

• n-step transition probabilities are calculated successively until the system reaches

steady-state or n = 100 which ever occurs first.

• In the absence of a steady-state a message stating such is printed.

DESCRIPTION OF ALGORITHM: SIM_SOFT_MAINT

Terms and Notations

N : Number of n-step probabilities.

NS : Number of states of deterioration for the

 software to be maintained.

PROB (X0=I) : Probability of being in state I initially (operating

 efficiency)

P (I, J) : One step stationary transition probability

PN (I, J) : n steps stationary transition probability

MAT (I, J) : Probabilities of being in state J after I steps.

Algorithm SIM_SOFT_MAINT for n-step probabilities using

 Markov Analysis

 1. [INPUT]

 (a) [Number of states for software maintenance]

 Read NS

 (b) [Probabilities of being in state I initially]

[Compute the probabilities (operating efficiency) of each state of deterioration initially

operating efficiency using Box-Muller transformation by (with the help of random numbers

generation), computing of their mean and standard deviation and normalizing the function

These probabilities are denoted by PROB(I)), I=1 to NS] or

 For I= 1 to NS

 Read PROB (I)

 End For

 (c) [One step stationary transition probabilities]

 For I=1 to NS

 For J = 1 to NS

 Read P (I, J)

 End for

 End for

2. [Calculate n step stationary transition

 probabilities for N = 1, 2, 3, …..]

 For R =1 to NS

 For S = 1 to NS

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

 Volume-15, Issue-II 272

 PN[R, S) = 0

 For J= 1 to NP

 PN (R, S)=PN (R,S)+P(R,J)*P (J,S)

 End for

 End for

 End for

3. [Compute steady state transition probability]

 For J=1 to NS

 TEMP(J)=0

 For I=1 to NS

 TEMP (J)=TEMP(J)+PROB(I)*PN (I,J)

 End for

 End for

4. [Write probabilities of being in state j after i steps

 in the form of matrix MAT using TEMP (J)]

5. [write results]

 For I=1 toNS

 For J= 1 to NS

 Write MAT(I,J)

 End for

 End for

6. Stop

RESULTS & DISCUSSION

The simulator is developed in this chapter to compute n-step e steady state stationary

transition probabilities for various state of the software under maintenance. The one step

transition probabilities for five initial states of deterioration of the software under

maintenance have been shown in table 1. The transition probabilities are chosen according to

Markovian property i.e. the sum of the probabilities of going from one state to all other state

is one.

The operating efficiency of the software is supposed to be 0.95, 0.87, 0.79, 0.75 and 0.70.

The steady state transition probabilities for each state denoted by 0,1,2,3 and 4 are shown in

the table 2 in the form of results.

This simulator is executed for a maximum value of n=100 or till the system reaches a steady

state while calculating n-step probabilities successively.

TABLE 1: Transition Probabilities Matrix

To State & From State 0 1 2 3 4

0 0.55 0.40 0.03 0.02 0

1 0 0.50 0.46 0.03 0.01

2 0 0 0.44 0.50 0.06

3 0 0 0 0.68 0.32

4 0 1.0 0 0 0

TABLE 2: Steady State Transition Probabilities

State Steady state stationary Transition Probabilities

0 0

1 0.3173

2 0.2308

3 0.3123

4 0.1396

CONCLUSION:

A gradual eye on upkeeps of the software would reveal that with the passage of time the ‘operating

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

 Volume-15, Issue-II 273

efficiency’ decreases and the level of maintainability effort increase. The initial state of software’s

operating efficiency proceeds to a state after passing through ‘n’ steps where the operating efficiency

noose dives to the lowest level referring to as ‘steady state’ after which there will conceptually be no

retardation of software efficiency any further and the concerned software may be branded as ‘unfit for

use’ i.e. no further maintainability is desirable and no effort should be made to modify the software. This

is achieved after a large number of steps and as such the transition probabilities remain fairly constant

for each state as shown in the table 16. This state is the terminal stage where the user has to adapt the

strategy of either invests in new alternate software or goes for an improved version of the same. The

software simulation tool designed here will be helpful for the software project managers in judging the

maintenance efforts of the software.

Though it is difficult to quantify the actual maintenance efforts at different point of time of

our choice, but its impact is fairly realized over the software life cycle. A precise measure of

software maintainability can help better manage the maintenance phase effort.

Reference:

Aannestad, B., Hooper, J., “The Future of Groupware in the Interactive Workplace”,

HRMagazine, Vol. 12, Issue 11, November 1997, pp. 37-41.

Abdrabou A, Zhuang W (2006) A position-based QoS routing scheme for UWB mobile ad

hoc networks. IEEE J. Select. Areas Commun. 24:850-856.

Agarwal, H., Demillo, R. A. and Spafford, E.H. Debugging with Dynamic Slicing and

 Backtracking, Software Practice and Experience, 23, pp. 589-616, 1993.

Campos, J., Arcuri, A., Fraser, G. and Abreu, R. Continuous Test Generation: Enhancing

 Continuous Integration with Automated Test Generation, In the Proceedings of

 Automated Software Engineering (ASE), 2014.

Camuffo, M., Maiocchi, M. & Morselli, M., 1990. Automatic software test generation.

Inform. Softw. Technol., pp. 337-346. Carnes, P., 1997. Software reliability in weapon

systems. , Proceedings of 8th International Symposium On Software Reliability Engineering,

p. 114–115.

Canfora, G., Cimitile, A. and De Lucia, A. Conditioned Program Slicing. Information and

Software Technology, 40(11), pp. 595–607, 1998.

Cao, Y., Hu, C. and Li, L. An Approach to Generate Software Test Data for a Specific Path

Automatically with Genetic Algorithm, In the Proceedings of ICRMS, Chengdu, pp. 888-

 892, 2009.

Dufner, D., Kwon, O., Hadidi, R., “WEB-CCAT: A Collaborative Learning Environment For

Geographically Distributed Information Technology Students and Working

Professionals”, Communications of the Association for Information Systems, Vol. 1,

Article 12, March 1999, Available [Online]: http://cais.isworld.org/articles/1-

12/article.htm [26 November 2000].

Edvardsson, J and Kamkar, M. Analysis of the Constraint Solver in UNA Based Test Data

 Generation, In the Proceedings of the 9th European software engineering conference held

 jointly with 9th ACM SIGSOFT international symposium on Foundations of software

engineering, 26(5), pp. 237-245, 2003.

Ehrlich, W. K., Lee, K. & Molisani, R. H., 1990. Applying reliability measurement: A case

Study. IEEE Transaction on Software, p. 56–64..

Udell, J., Asthagiri, N., Tuvell, W., Peer-To-Peer: Harnessing the Power of Disruptive

Technologies, O’Reill & Associates, 2001.

UNCTAD,World Economy Report(2012)The Software Industry and Developing Country PP-

38- 42 Review of Literature - II Economic Analysis of Changing Dimensions of IT

Sector in India Page 74.

Upadhya, Carol (2007). „Employment, Exclusion & „Merit‟ in the Indian IT Industry‟,

 Economic & Political Weekly, A Sameeksha Trust Publication

alsoseehttp://www.epw.org.in ,VolXLI No.36 September9- 15,2006 PP-1863- 1867.

Vaishnav, Rajiv (2011).‟ Indian Industry2011: Key Driver of growth‟, The Hindu Survey of

Indian Industry, REGD, RN/5734|61 pp.190-192.

mailto:iajesm2014@gmail.com
http://cais.isworld.org/articles/1-12/article.htm
http://cais.isworld.org/articles/1-12/article.htm

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

 Volume-15, Issue-II 274

Varma, Shweeta (2012). „Looking for that Sunshine‟, Dataquest, Vol.xxxNo.16 &

17August31- September15, 2012, PP- 104-108.

Vivek V, Sandeep T, Manoj B S, Murthy C S R (2004) A novel out-of-band signaling

 mechanism for enhanced real time support in tactical ad hoc wireless networks. Proc.

 IEEE RTAS 56-63.

 Wallace, D. & Coleman, C., 2001. Application and Improvement of Software Reliability

Models, NASA, Goddard Space Flight Centre(GSFC): Technical Report,Software

Assurance Technology Center.

Wang M, Kuo G S (2005) An application-aware QoS routing scheme with improved stability

for multimedia applications in mobile ad hoc networks. Proc. IEEE Vehicular

Technology Conf. 1901-1905.

Wang, Z. & Wang, J., 2005. Parameter estimation of some NHPP software reliability models

with changepoint. Communications in Statistics: Simulation and Computation, Volume

34, p. 121–134..

Wang, Z., Wang, J. & Liang, X., 2007. Non-parametric Estimation for NHPP Software

Reliability Models. Journal of Applied Statistics, pp. 107-119.

Whittaker, J. A., 2000. What is software testing? And why is it so hard?. Software, pp. 70-79.

Wood, A., 1996. Predicting software reliability. IEEE Computer, Volume 11, pp. 69 -

77.

Wilson, J., Hoskin, N., Nosek, J., “The Benefits of Collaboration for Student Programmers”,

24th SIGCSE technical symposium on Computer Science Education, February 1993, pp.

160-164.

mailto:iajesm2014@gmail.com

