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Abstract: 
 In this paper we study one more extension of the concept of statistical convergence namely 

almost λ-statistical convergence. In section 1.2 we discuss some inclusion relations between 

almost λ-statistical convergence, strong almost (V,λ)-summability and strong almost 

convergence. Further in section 1.3 we study the necessary and sufficient condition for an 

almost statistically convergent sequence to be almost λ-statistically convergent. 
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1.1 Introduction 

Let s be the set of all real or complex sequences and let l∞, c and c0 denote the Banach spaces 

of bounded, convergent and null sequences x = {ξk} respectively normed by ||x|| = 
k

sup |ξk|. 

Suppose D is the shift operator on s,      i.e. D({ξk}) = {ξk+1}.           

Definition 1.1.1. A Banach limit [1] is a linear functional L defined on l∞, such that   

(i) L(x) ≥ 0 if ξk ≥ 0 for all k, 

(ii) L(Dx) = L(x) for all x ∈ l∞, 

(iii) L(e) = 1 where e = {1,1,1,…}. 

Definition 1.1.2. A sequence x ∈ l∞ is said to be almost convergent [19] if all Banach limits 

of x coincide.  

Let ĉ  and 0ĉ  denote the sets of all sequences which are almost convergent and almost 

convergent to zero. It was proved by Lorentz [19] that  

ĉ  = {x = {ξk}: 






n

1k

mk
n n

1
lim  exists uniformly in m}. 

Several authors including Duran [7], King [15] and Lorentz [19] have studied almost 

convergent sequences. 

Definition 1.1.3. A sequence x = {ξk} is said to be (C,1)-summable if and only if 





n

1k

k
n n

1
lim

exists.                                              

Definition 1.1.4. A sequence x = {ξk} is said to be strongly (Cesáro) summable to the number 

ξ if 

n

1
lim
n 





n

1k

k| – ξ| = 0. 

Spaces of strongly Cesáro summable sequences were discussed by Kuttner [17] and some 

others and this concept was generalized by Maddox [20]. 

Remark 1.1.1. Just as summability gives rise to strong summability, it was quite natural to 

expect that almost convergence must give rise to a new type of convergence, namely strong 

almost convergence and this concept was introduced and discussed by Maddox [20]. 

Definition 1.1.1. A sequence x = {ξk} is said to be strongly almost convergent to the number 

ξ if           

n

1
lim
n 





n

1k

mk| – ξ| = 0 uniformly in m.                                          

 

If ]ˆ[c  denotes the set of all strongly almost convergent sequences, then  
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]ˆ[c  = {x = {ξk}: for some ξ, 
n

1
lim
n 





n

1k

mk| – ξ| = 0 uniformly in m}. 

Let λ = {λn} be a non-decreasing sequence of positive numbers tending to ∞ such that 

λn+1 ≤ λn + 1, λ1 = 1. 

Definition 1.1.7. Let x = {ξk} be a sequence. The generalized de la Valée-Pousin mean is 

defined by 

tn(x) = 





nk

k

n

1

I

 

where In = [n – λn +1, n]. 

Definition 1.1.8. A sequence x = {ξk} is said to be (V,λ)-summable to a number ξ [18] if tn(x) 

→ ξ as n→∞. 

Remark 1.1.9. Let λn = n. Then In = [1, n] and  

tn(x) = 



n

1k

k
n

1
. 

Hence (V,λ)-summability reduces to (C,1)-summability when λn = n. 

Definition 1.1.10. A sequence x = {ξk} is said to be strongly almost (V,λ)-summable to a 

number ξ if 

n
n

1
lim






nk

mk|
I

– ξ| = 0 uniformly in m. 

In this case we write ξk → ξ[ V̂ ,λ] and [ V̂ ,λ] denotes the set of all strongly almost (V,λ)-

summable sequences, 

i.e. [ V̂ ,λ] = {x = {ξk}: for some ξ, 
n

n

1
lim






nk

mk|
I

– ξ| = 0 uniformly in m}. 

Definition 1.1.11.  A sequence x = {ξk} is said to be almost statistically convergent to the 

number ξ if for each ε > 0 

n

1
lim
n 

|{k ≤ n: |ξk+m – ξ| ≥ ε}| = 0 uniformly in m. 

In this case we write Ŝ -lim ξk = ξ or ξk → ξ( Ŝ ) and Ŝ  denotes the set of all almost 

statistically convergent sequences. 

Definition 1.1.12.  A sequence x = {ξk} is said to be almost λ-statistically convergent to the 

number ξ if for each ε > 0 

n
n

1
lim


|{k ∈ In: |ξk+m – ξ| ≥ ε}| = 0      uniformly in m. 

In this case we write Ŝ -lim ξk = ξ or ξk → ξ( Ŝ ) and Ŝ denotes the set of all almost λ-

statistically convergent sequences. 

Remark 1.1.13. If λn = n, then Ŝ is same as Ŝ . 

1.2 SOME INCLUSION RELATION BETWEEN ALMOST Λ-STATISTICAL 

CONVERGENCE, STRONG ALMOST (V,Λ)-SUMMABILITY AND STRONG 

ALMOST CONVERGENCE 

In this section we study some inclusion relations between almost             λ-statistical 

convergence, strong almost (V,λ)-summability and strong almost convergence. First we show 

that every strongly almost summable sequence is almost statistically convergent. 

 

Theorem 1.4.1. If a sequence x = {ξk} is almost strongly summable to ξ, then it is almost 

statistically convergent to ξ. 

Proof.  Suppose that x = {ξk} is almost strongly summable to ξ. Then 

n

1
lim
n 





n

1k

mk| – ξ| = 0 uniformly in m. …(1) 

Let us take some ε > 0. We have  
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



n

1k

mk| – ξ| ≥ 







ε

mk

mk

| – ξ| 

        ≥ ε|{k ≤ n: |ξk+m – ξ| ≥ ε}|                             

Consequently, 

     
n

1
lim
n 





n

1k

mk| – ξ| ≥ ε
n

lim
n

1
|{k ≤ n: |ξk+m – ξ| ≥ ε}| 

                                                       

Hence by (1) and the fact that ε is fixed number, we have 

n
lim

n

1
|{k ≤ n: |ξk+m – ξ| ≥ ε}| = 0 uniformly in m. 

⇒   x is almost statistically convergent.   

Theorem 1.2.2. Let λ = {λn} be same as defined earlier. Then 

(i) ξk → ξ[ V̂ ,λ] ⇒ ξk → ξ( Ŝ )  

and the inclusion [ V̂ ,λ] ⊆ Ŝ  is proper, 

(ii) if x ∈ l∞ and ξk → ξ( Ŝ ), then ξk → ξ[ V̂ ,λ] and hence ξk → ξ ]ˆ[c  provided   x = {ξk} 

is not eventually constant.  

(iii) Ŝ ∩ l∞ = [ V̂ ,λ] ∩ l∞, 

where l∞ denotes the set of bounded sequences. 

Proof. (i). Since ξk → ξ[ V̂ ,λ], for each ε > 0, we have  

n
n

1
lim






nk

mk|
I

– ξ| = 0 uniformly in m.       …(2)     

Let us take some ε > 0. We have  





nk

mk|
I

– ξ| ≥ 










ε
k

mk

mk

n

|
I

– ξ| 

             ≥ ε|{k ∈ In: |ξk+m – ξ| ≥ ε}|                                     

Consequently, 

n
n

1
lim






nk

mk|
I

– ξ| ≥ ε
n

lim
n

1


|{k ∈ In: |ξk+m – ξ| ≥ ε}| 

Hence by using (2) and the fact that ε is fixed number, we have 

n
lim

n

1


|{k ∈ In: |ξk+m – ξ| ≥ ε}| = 0  uniformly in m, 

i.e. ξk → ξ( Ŝ ). 

It is easy to see that [ V̂ ,λ] ⊊ Ŝ . 

(ii). Suppose that ξk → ξ( Ŝ ) and x ∈ l∞. Then for each ε > 0 

n
lim

n

1


|{k ∈ In: |ξk+m – ξ| ≥ ε}| = 0  uniformly in m. …(3) 

Since x ∈ l∞, there exists a positive real number M such that |ξk+m – ξ| ≤ M for all k and m. 

For given ε > 0, we have     

                    
n

1






nk

mk|
I

– ξ| = 
n

1













ε
k

mk

mk

n

|
I

– ξ| + 











ε
k   

mk

n

mk

n

|
1

I

– ξ|           

≤ 







ε

k   n

mk

n

M
1

I

 + 


nk n

ε
1

I
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= 
n

M


|{k ∈ In: |ξk+m – ξ| ≥ ε}| + ε

n

1


[n–(n–λn +1) + 1] 

= 
n

M


|{k ∈ In: |ξk+m – ξ| ≥ ε}| + ε

n

1


λn    

    = 
n

M


|{k ∈ In: |ξk+m – ξ| ≥ ε}| + ε 

⇒ 








nk

mk

n
n

|
1

lim
I

– ξ| ≤ 
n

n

1
limM


|{k ∈ In: |ξk+m – ξ| ≥ ε}| + ε             

Hence by using (3), we get  

n
n

1
lim






nk

mk|
I

– ξ| = 0 uniformly in m.  …(4)          

⇒    ξk → ξ[ V̂ ,λ] . 

Further, we have 

 



n

1k

mk|
n

1
– ξ| = 






n-n

1k

mk|
n

1
– ξ| + 




n

1-nk

mk

n

|
n

1
– ξ|                    

   = 





n-n

1k

mk|
n

1
– ξ| + 




nk

mk|
n

1

I

– ξ|   

                            ≤ 







n-n

1k

mk

n

|
1

– ξ| + 





nk

mk

n

|
1

I

– ξ| 

                                             ≤ 





nk

mk

n

|
2

I

– ξ| 

⇒  






n

1k

mk
n

|
n

1
lim – ξ| ≤ 2 









nk

mk

n
n

|
1

lim
I

– ξ| 

Hence  

      






n

1k

mk
n

|
n

1
lim – ξ| = 0 uniformly in m. [Using (4)] 

⇒    ξk → ξ ]ˆ[c .  

(iii). Let x ∈ l∞ be such that ξk → ξ ( Ŝ ). 

Then by (ii),  

ξk → ξ[ V̂ ,λ]. 

Thus 

   Ŝ ∩ l∞ ⊂ [ V̂ ,λ] ∩ l∞.   …(5) 

Also by (i), we have 

ξk → ξ[ V̂ ,λ] ⇒ ξk → ξ( Ŝ ).  

So     [ V̂ ,λ] ⊂ Ŝ . 

  ⇒   [ V̂ ,λ] ∩ l∞ ⊂ Ŝ  ∩ l∞.   …(6)    

Hence by (5) and (6) 

Ŝ ∩ l∞ = [ V̂ ,λ] ∩ l∞. 

This completes the proof of the theorem 

1.3 NECESSARY AND SUFFICIENT CONDITION FOR AN ALMOST 

STATISTICALLY CONVERGENT SEQUENCE TO BE ALMOST Λ-

STATISTICALLY CONVERGENT 
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Since 
n

n  is bounded by 1, we have Ŝ ⊆ Ŝ  for all λ. In this section we discuss the following 

relation.  

Theorem 1.4.1. Ŝ  ⊆ Ŝ  if and only if  

     
n

inflim n

n





> 0,     …(7)    

i.e. every almost statistically convergent sequence is almost λ-statistically convergent if and 

only if (7) holds. 

Proof. Let us take an almost statistically convergent sequence x = {ξk} and assume that (7) 

holds. 

Then for each ε > 0, we have 

n

1
lim
n 

|{k ≤ n: |ξk+m – ξ| ≥ ε}| = 0       uniformly in m.  …(8) 

For given ε > 0 we get, 

{k ≤ n: |ξk+m – ξ| ≥ ε} ⊃ {k ∈ In: |ξk+m – ξ| ≥ ε}. 

Therefore, 

n

1
|{k ≤ n: |ξk+m – ξ| ≥ ε}| ≥ 

n

1
|{k ∈ In: |ξk+m – ξ| ≥ ε}| 

                                                        ≥ 
n

n

n

1


|{k ∈ In: |ξk+m – ξ| ≥ ε}| 

Taking the limit as n→∞ and using (7), we get 

n
lim

n

1


|{k ∈ In: |ξk+m – ξ| ≥ ε}| = 0  uniformly in m, 

i.e. ξk → ξ( Ŝ ). 

Hence Ŝ  ⊆ Ŝ for all λ. 

Conversely, suppose that Ŝ  ⊆ Ŝ  for all λ. 

We have to prove that (7) holds. 

Let as assume that 

n
inflim n

n





 = 0. 

As in [9], we can choose a subsequence {n(j)} such that   

     
n(j)

n(j)
 < 

j

1
. 

Define a sequence x = {ξi} by  

ξi = 


  1,2,3,...  j,iif1

otherwise.0
n(j)I

 

Then x ∈ ]ˆ[c   and hence by Theorem 1.4.1, x ∈ Ŝ . But on the other hand           x ∉ [ V̂ ,λ] 

and Theorem 1.4.1 (ii) implies that x ∉ Ŝ . Hence (7) is necessary. 

This completes the proof of the theorem 
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