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Abstract 
This paper discusses key results from the literature in the field of local polynomial regression. 

Local polynomial regression (LPR) is a nonparametric technique for smoothing scatter plots 

and modeling functions. For each point, x0, a low-order polynomial WLS regression is fit 

using only points in some “neighborhood” of x0. The result is a smooth function over the 

support of the data. LPR has good performance on the boundary and is superior to all other 

linear smoothers in a minimax sense. The quality of the estimated function is dependent on 

the choice of weighting function, K, the size the neighborhood, h, and the order of 

polynomial fit, p. We discuss each of these choices, paying particular attention to bandwidth 

selection. When choosing h, “plug-in” methods tend to outperform cross-validation methods, 

but computational considerations make the latter a desirable choice. Variable bandwidths are 

more flexible than global ones, but both can have good asymptotic and finite-sample 

properties. Odd-order polynomial fits are superior to even fits asymptotically, and an adaptive 

order method that is robust to bandwidth is discussed. While the Epanechnikov kernel is 

superior is an asymptotic minimax sense, a variety are used in practice. Extensions to various 

types of data and other applications of LPR are also discussed. 

Introduction 

Alternative Methods 

Parametric regression finds the set of parameters that fits the data the best for a 

predetermined family of functions. In many cases, this method yields easily interpretable 

models that do a good job of explaining the variation in the data. However, the chosen family 

of functions can be overly- restrictive for some types of data. Fan and Gijbels (1996) present 

examples in which even a 4th- order polynomial fails to give visually satisfying fits. Higher 

order fits may be attempted, but this leads to numerical instability. An alternative method is 

desirable. 

One early method for overcoming these problems was the Nadaraya-Watson estimator, pro- 

posed independently and simultaneously by Nadaraya (1964) and Watson (1964). To find an 

esti- mate for some function, m(x), we take a simple weighted average, where the weighting 

function is typically a symmetric probability density and is referred to as a kernel function. 

Gasser and Mu¨ller (1984) proposed a similar estimator: 

      (1) 

where si = (Xi + Xi+1)/2, s0 = −∞, and sn+1 = ∞. This estimator is able to pick up local features 

of the data because only points within a neighborhood of x are given positive weight by Kh. 

However, the fit is constant over each interval, (si, si+1), and a constant approximation may be 

insufficient to accurately represent the data. A more dynamic modeling framework is desired. 

Local Polynomial Regression (LPR) 

In local polynomial regression, a low-order weighted least squares (WLS) regression is fit at 
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each point of interest, x using data from some neighborhood around x. Following the notation 

from Fan and Gijbels (1996), let the (Xi, Yi) be pairs of data points such that 

 

where  is the variance of Yi at the point Xi and Xi comes from 

some distribution, f . In some cases, homoskedastic variance is assumed, so we let σ2(X) = σ2. 

It is typically of interest to estimate m(x). Using Taylor’s Expansion: 

(2) 

We can estimate these terms using weighted least squares. Minimze: 

 
In (4), h controls the size of the neighborhood around x0, and Kh(.) controls the weights, 

where , and K is a kernel function. Denote the solution to (4) as 

 It is often simpler to write the weighted least 

squares problem in matrix notation. Therefore, let X be the design matrix centered at x0: 

 
Let W be a diagonal matrix of weights such that Wj,j = [Kh(Xi − x0)]. Then the minimization 

problem: 

 
is equivalent to (4), and β^ = (XT W X)−1XT W y. (Fan and Gijbels, 1996) We can also use 

this notation to express the conditional mean and variance of β^: 

(8) 

where s = (m(X1), . . . , m(X2)) − Xβ and Σ = diag . There are three 

critical parameters whose choice can effect on the quality of the fit. These are the bandwidth, 

h, the order of the local polynomial being fit, p, and the kernel or weight function, K (often 

denoted Kh to emphasize its dependence on the bandwidth). While we focus mainly on 

estimation of m(x), many of these results can be used for estimating the rth derivative of m(x) 

mailto:iajesm2014@gmail.com


SNEH TEACHERS TRAINING COLLEGE, JAIPUR  
“Foster Emotional Intelligence in Youth Through Education” (ICFEIYE-2024) 

DATE: 15 April 2024  
International Advance Journal of Engineering, Science and Management (IAJESM)  

Multidisciplinary, Indexed, Double-Blind, Open Access, Peer-Reviewed, 
Refereed-International Journal, Impact factor (SJIF) = 7.938 

348 January-June 2024, iajesm2014@gmail.com, ISSN -2393-8048 
 

Volume-21, Issue-SE  
 

 ̂

 ̂

^ 

with slight modification. The remainder of this section discusses early work on the subject of 

LPR, and Section 2 covers some general properties. Section 3 discusses the choice of 

bandwidth, Section 4 covers the choice of order and the kernel function, Section 5 discusses 

options for fast computation, and Section 6 details some extensions. 

Early results for local polynomial regression 

Stone (1977) introduced a class of weight functions used for estimating the conditional 

proba- bility of a response variable, Y given a corresponding value for X. Particularly, Stone 

suggests a weight function that assigns positive values to only the k observations with X-

values closest to the point of interest, x0, where “closest” is determined using some pseudo-

metric, p, which is subject to regularity conditions. A “k nearest neighbor” (kNN) weight 

function is defined as follows. For each x0, let Wi(x) be a function such that Wi(x) > 0 if and 

only if i ∈ Ik, where Ik is an index set defined such that i ∈ Il if and only if fewer than k of the 

points X1, X2, . . . , Xn are closer to x0 than Xi using the metric p. Otherwise, let Wi(x) = 0. 

Then Wi(x) is a kNN weight function. Moreover, the sequence of kNN weight functions, Wm 

is consistent if km → ∞ and km/m → 0 as m → ∞. Stone uses a consistent weight function to 

estimate the conditional expectation of Y using a local linear regression. The proposed 

equation is equivalent to the linear case of (4). 

Cleveland (1979) expanded upon this idea, suggesting an algorithm to obtain an estimated 

curve that is robust to outliers. As in Stone (1977), we fit a p-degree local polynomial for 

each Yi using weights wj(Xi) and note the estimate, Yi. To get robust estimates, we find new 

weights according the size of the estimated residuals, ei  = Yi − Yi, and letting , 

where s is a scaling factor equal to the median of the ei’s, and B(·) is a weight function. 

(Cleveland suggests using a bisquare weight function, see Section 4.2.) Finally, we compute 

the robust estimators by fitting the weighted polynomial regression model for each point Xi  

using  as the new weights. The combined weights in this estimator ensure that 

“near-by” points remain strongly weighted, but points with high associated first-stage 

residuals have less influence over the final fit. This keeps estimates near “outlier” points from 

being highly biased while still ensuring a smooth fit that picks up local features of the data. 

An early attempt at describing the distributional properties of the local polynomial regression 

estimator is given in Cleveland (1988). Building on the methodology described above in 

Cleveland (1979), they note that the estimated mean function, m(x ), can be written as a 

linear combination Since we are assuming that the ϵ are normally distributed, it is clear that 

m(x ) also has a what we would have for standard polynomial regression and suggest that 

results from the standard case may hold for LPR. Some relevant examples are given in 

Cleveland (1988). 

Properties of Local Polynomial Regression estimators 

Conditional MSE 

Fan and Gijbels (1992) establish some asymptotic properties for the estimator described in 

(4). In particular, they give an expression for the conditional bias and conditional variance of 

the estimator for m(x) found by minimizing: 

 
Note that the linear (p = 1) case of (4) is a equivalent to (10) when α(Xj) = 1. The conditional 

bias and variance are important because they allow us to look at the conditional MSE, which 

is important for choosing an optimal bandwidth. (See Section 3 
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The results from Fan and Gijbels (1992) are limited to the case where the Xi’s are univariate. 

Ruppert and Wand (1994) give results for multivariate data, proposing the following model: 

 

where are iid with mean 0 and 

variance 1, and σ2(x)  = V ar(Y |X = x) < ∞. A solution to the problem comes from slightly 

modifying (6). Consider the case of local linear regression (p = 1). We now let 

 

and denote , where K is a d-

dimensional kernel and 

is the bandwidth matrix, 

analogous to h for the uni- variate case. Often H will be given a simple diagonal form, and 

then . 

Using similar assumptions to the univariate case, we can give expression for the conditional 

bias and conditional variance of mH(x). We work with the conditional bias and variance 

(given n) because, by conditioning on the data, the moments of mH  (x) exist with probability 

tending to 1. The asymptotic properties of this estimator will depend on whether we are 

looking at an interior point or a point near the boundary. For some interior point x0, we have 

the following: 

 
In the above, Hm denotes the Hessian matrix (d × d-dimensional) of m and R(K) is the square 

integral of K(u). In the lead term of the bias, note that HHm(x0) is the sum over each direction 

of the product of the bandwidth times the curvature of m at x0. If there is very high curvature, 

an estimator with a large bandwidth will struggle to approximate it accurately, which leads to 

a high bias as (13) would suggest. The first part of the expression in (14) can be thought of as 

the inverse of the effective sample size used for the fit. So as we would expect, the variance 

increase as the effective sample size decreases. The relationship in these two expressions is 

similar to what we see in the univariate case: the larger the neighborhood, the larger the bias. 

Conversely, when the neighborhood becomes smaller, the variance will be large. (This 

bias/variance tradeoff is discussed in Section 3.1.) 

Minimax Efficiency 

Fan (1993) showed that the local linear model using the Epanechnikov kernel optimizes the 

linear minimax risk. Minimax risk is a criterion used to benchmark the efficiency of an 

estimator in terms of the sample size necessary to obtain a certain quality of results. For 

example, if an estimator  is 95% efficient when compared to the “optimal” 

mailto:iajesm2014@gmail.com


SNEH TEACHERS TRAINING COLLEGE, JAIPUR  
“Foster Emotional Intelligence in Youth Through Education” (ICFEIYE-2024) 

DATE: 15 April 2024  
International Advance Journal of Engineering, Science and Management (IAJESM)  

Multidisciplinary, Indexed, Double-Blind, Open Access, Peer-Reviewed, 
Refereed-International Journal, Impact factor (SJIF) = 7.938 

350 January-June 2024, iajesm2014@gmail.com, ISSN -2393-8048 
 

Volume-21, Issue-SE  
 

^ 

 ̂estimator, , then an estimate based m^ (x) on n = 100 data points using m(x) will 

have similar asymptotic properties to an estimate based on 95 observations using mopt(x). 

Fan et al. (1997) extended this result to LPR with order p as well as the case of derivative 

estimation. So local polynomial regression is the best linear smoother in this minimax sense 

for interior points. 

Performance at the boundary 

One advantages of LPR over other smoothers is its relatively good performance near the 

bound- ary. For many nonparametric smoothers, estimates of points near the boundary of the 

support of the data behave differently from those on the interior. Let f be the marginal 

distribution function for the Xi. Denote the support of f by supp (f ). We say x is an interior 

point if  

 
where supp(K) is the support of KH(x − •). So x is an interior point if the neighborhood 

around x as defined by H does includes points outside the support of f . 

Fan and Gijbels (1992) note that previous estimators, such as the Nadaraya-Watson and 

Gasser- Mu¨ller estimators described in Section 1.1 converge more slowly at the boundary.  

However, they show that the convergence rate of the estimator they propose (see Section 3 is 

the same for bound- ary points and interior points. Ruppert and Wand (1994) note a similar 

results for the multivariate case. However, in both situations, the conditional variance is 

larger in practice for points on the boundary than for points on the interior. Fan and Gijbels 

attributed this to the lower number of data points being used for estimations near the 

boundary, but Ruppert and Wand also note that the estimates for the intercept and slope 

parameters are not asymptotically orthogonal as they are for interior point estimations. 

Finally, Cheng et al. (1997) show that no linear estimator can beat LPR on the boundary in a 

minimax sense in terms of MSE. Rather than by showing directly that other proposed 

boundary corrections are inferior, they show that the local polynomial estimator is optimal in 

this minimax sense, and therefore any other estimator cannot give a substantial im- 

provement in efficiency on. So LPR is minimax efficient for both interior and boundary 

points. For futher discussion, also see Hastie and Loader (1993) 

Bandwidth selection 

The bias-variance tradeoff 

The choice of bandwidth, h, is of critical importance for local polynomial regression. The 

bandwidth controls the complexity or how “jagged” the fit is. Smaller values for h will result 

in less smoothing while larger values produce a curve with fewer sharp changes. 

Additionally, there is a tradeoff between variance and bias. Larger values for h will reduce 

the variance, since more points will be included in the estimate. However, as h increase, the 

average distance between these “local” points and x0 will also increase. This can result in a 

larger bias. A natural way to choose a bandwidth and balance this tradeoff is by minimizing 

the mean squared error (MSE). (Fan and Gijbels, 1996) In local regression settings, we must 

also choose whether to find a bandwidth, h, that is optimal for the full range of our data (a 

global bandwidth) or choose an hx that is optimal at each point but varies depending on x. 

This latter choice is referred to as a variable bandwidth. We focus on global bandwidths first. 

Global bandwidth selection 

Integrating the conditional MSE over the parameter space gives an expression for Mean In- 

tegrated Squared Error (MISE). Minimizing MISE is a common method for choosing an 

optimal bandwidth. (Ruppert et al., 1995, Xia and Li, 2002, Fan and Gijbels, 1992) 
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Estimating the min- imizer, hopt, can either be done empirically using cross-validation (CV) 

techniques or asymptotically using expressions for the asymptotic bias and variance as 

described in 2.1. These results give us an expression for the conditional MSE, but this 

expression includes unknown terms (par- ticularly, m (x), σ(x), and f (x)) that we must 

estimate. There are many approaches for finding estimates for these unknowns, varying from 

simple “rules of thumb” to complex, multi-stage meth- ods, but they are unified in that they 

“plug in” estimates for these unknown terms to solve for hopt. CV methods simply choose the 

value for h (generally from some grid of possible values) that minimizes the CV error, 

typically using leave-one-out CV. We discuss CV methods first. 

Fan and Gijbels (1992) describe a simple method for estimating h using cross-validation. To 

find an estimate for the global optimal bandwidth, we minimize: 

 
where m−j(·) denotes the estimated mean function leaving out the jth term. Note that the 

dependence of m(·) on h is suppressed.  Xia and Li (2002) add a weight function to reduce 

boundary effects, solving: 

 
The resulting estimator, ^hn is asymptotically optimal with respect to MISE: 

 
Additionally, hn is asymptotically normal, centered about the true optimal bandwidth (as 

defined by MISE), hopt. This estimator also has good finite sample properties, as 

demonstrated via sim- ulation. Stable estimates of hopt can be obtained through the use of 

higher-order polynomial fits, particularly when sample sizes are large (n > 200). Chapter 3 of 

Wand and Jones (1995) also provides a good description of CV techniques in this context. Li 

and Racine (2004) derive the rates of convergence for bandwidths chosen through cross-

validation and show that the resulting estimators are asymptotically normal about the true 

value. Unlike Xia and Li (2002), these results can be applied to multivariate problems. 

The other school of thought for obtaining global bandwidths “plugs in” estimates of the un- 

known terms in an expression for the asymptotic MSE and minimizes the resulting function. 

Ruppert et al. (1995) provide a global bandwidth selection algorithm that performs well 

relative to cross-validation estiamtors in terms of both asymptotics and practical performance. 

Expressions for estimating the unknowns are given, and three “plug-in”-type estimators are 

proposed: a simple, “rule of thumb” estimator, hROT , a “direct plug-in” estimator, hDPI, and a 

“solve-the-equation” estimator based on solving a system of equations, hSTE.  The simplest is 

hROT , which estimates the mean function and variance by dividing the interval into blocks 

and fitting quartic functions. The direct plug-in estimator is a two-stage estimator which uses 

the same quartic estimates from hROT to obtain first-stage estimates. Finally, hSTE is computed 

by solving a system of equations derived using estimates from the the ROT and DPI 

estimators. 

In terms of theoretical performance, hROT is based on an inconsistent estimator and thus has 

no consistency properties. However, the other two estimators are covergent to the MISE-
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optimal bandwidth. In simulation, all three estimators performed well, although hROT had a 

tendency to “undersmooth,” and hSTE occasionally chose bandwidths that were larger than 

optimal (twice out of 3000 trials). While the differences between hDPI and hSTE were small, 

the DPI estimator performed best in all but one setting. Another global plug-in estimator is 

proposed by Fan and Gijbels (1995a) is discussed in the next section. 

Variable bandwidth selection 

Variable bandwidths provide a compelling alternative to global bandwidths since they are 

more flexible and can respond to the local properties of the data. An optimal estimator will 

choose smaller bandwidths for points where the nearby data is jagged and larger bandwidths 

where the data is smoother and more linear. 

Using the model given in (10), Fan and Gijbels (1992) attempt to find a function αopt(x) to 

minimize Average Mean Integrated Squared Error (AMISE). The resulting expression for 

αopt(x) is: 

 
where W (x) is a nonnegative weight function and α∗(x) can take any values greater than 0. 

(This result is given as Theorem 3 in Fan and Gijbels (1992).) Note that the AMISE for a 

global band- width is obtained by setting α(·) = 1. Comparing the AMISE for the optimal 

constant and optimal variable bandwidths, we see that 

 
So asymptotically, the variable bandwidth estimator is better than the global bandwidth 

estimator by mean integrated squared error. Also, Fan and Gijbels (1992) show that the 

“plug-in” estimator, is asymptotically equivalent to m(x, αopt ), which allows us to show that 

the plug-in estimator is asymptotically normal about the true mean function. 

As in the case of global plug-in estimators, the quality of our estimate, αopt(·) will depend on 

the quality of our estimates for the unknown functions, f (x), m (x), and σ2(x). Cross-

validation is suggested as a method to obtain estimates for f (x) and mjj(x), while an estimate 

for σ2(x) can be obtained using the residuals, Y^j = Yj − m^ (Xj).  These estimates are 

plugged into (19) to give 

 
Schucany (1995) also proposes a variable bandwidth selector for kernel regression which can 

be extended for local linear regression. This estimator is based on the case where the values 

for Xi are equally-spaced, (Fan and Gijbels (1992) assumed a continuous, random 

distribution for the data with bounded support) leading to the nonparametric regression 

model: 

 
expression for the optimal bandwidth is given by: 
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where A is a constant dependent upon the kernel and B(x) is an approximation for the bias. 

To practically estimate hopt(x), we need to find estimates σ2 and Bt. Schucany (1995) suggest 

an estimator for B(x) that is calculated using a pilot bandwidth, so the quality of our final 

estimator, will depend on the choice of this “pilot bandwidth.” To estimate σ2, any √n-

consistent estimator is sufficient. It can be shown that ht/hopt(x) converges to 1 in probability, 

but the rate of convergence depends on the choice of pilot bandwidths. This local estimator 

compared favorably to a global bandwidth estimator in simulation. 

Fan and Gijbels (1995a) and Fan et al. (1996) propose two-stage, “data-driven” global and 

variable bandwidth estimators and flesh out their asymptotic and finite sample properties. 

First, we choose a pilot bandwidth using a residual squares criterion (RSC). RSC is defined 

thus: 

 
where V is the first diagonal element of (XT W X)−1(XT W 2X)(XT W X)−1. We can now 

choose a global bandwidth selector based on integrated RSC: 

 
Multiplying the minimizer of (24) by adjustment factor determined by the kernel, K (for de- 

tails, see Fan and Gijbels (1995a)) gives us a pilot estimate of the global optimal bandwidth 

denoted hRSC. (Note that hRSC depends on the choice of p and can be generalized for 

estimating the rth derivative.) Using this, Fan and Gijbels (1995a) now propose both global 

and variable bandwidth estimators. The global estimator is a simple refinement using cross-

validation: 

 
A variable bandwidth selector is chosen by breaking the support of the data into k 

subintervals, denoted Ik. For each interval, we minimize 

 
to find a pilot bandwidth for each subinterval. Smoothing over the resulting step function by 

locally averaging lets us fit an order-(p + 2) polynomial over the support of the data. We use 

the estimates from this fit as pilot estimates and for each Ik, solve (25). Smoothing the step 

function resulting from these refined estimates, we get an estimate for the optimal variable 

bandwidth function. 
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Simulation showed that the refinement produced substantial gains in terms of speed of 

convergence. Also, the variable bandwidth estimator had good properties when compared 

against the global bandwidth estimator, including the case where the underlying function was 

linear and hence a constant bandwidth was actually the optimal choice. 

Fan et al. (1996) built on the preceding by proving some additional theoretical results. 

Particularly, they give an asymptotic expansion of the conditional bias and variance, which 

allows us to determine their rates of convergence, showing that hRSC converges to hopt. These 

results are also extended for derivative estimation. 

Prewitt and Lohr (2006) propose a variable bandwidth estimator that reduces the need to 

estimate unknown equations. Fan and Gbels (1996) treated f as unknown and were forced to 

estimate it, while Schucany (1995) assumed equally-spaced data. Rather than use an estimate 

of f , Prewitt and Lohr use the eigen values of Mp = n−1XT WtXt to construct consistent 

estimators of the conditional variance and conditional bias. They construct their estimator for 

m(x) in two stages. The first stage estimates h1 by minimizing the AMSE(t, h) at the point x. 

This preliminary estimator is consistent but can be improved upon substantially. Substituting 

h1 for hopt and using the expressions for conditional bias and variance derived using the 

eigen value representation, they construct a second-stage estimator for AMSE, 

.  Both additive parts of this second stage estimator have the local 

variance σ2(x) as a common factor, so we do not need to estimate σ2(x) when minimizing 

). Thus, the second-stage estimator is not directly dependent on 

estimating either the variance function or the distribution of the data. 

While this method is asymptotically equivalent to the previous methods presented, it seems to 

perform better in finite sample. Prewitt and Lohr (2006) compared their two-stage method to 

the variable method suggested by Fan and Gijbels (1995a). The eigenvalue method showed 

substantial improvement over the “global over subinterval” method of Fan and Gijbels in 

terms of integrated squared error (ISE). In application, the estimated mean curve appeared 

somewhat jagged, and a five-point moving average was suggested for a smoother-looking 

curve. 

In this section, we have seen a variety of different methods for choosing bandwidths. In prac- 

tice, few of the variable methods are used due to computational difficulty. And while the 

“plug-in” methods can be superior to CV methods, CV methods are often far simpler to 

implement. Indeed, most existing software for R uses CV methods. (See Section 5.) 

Other model specifications: choosing p and K 

Choosing P 

In addition to choosing the optimal bandwidth, it is also important to choose the appropriate 

order of polynomial to fit. As when choosing a bandwidth, there is a tradeoff between bias 

and variance. Higher-order polynomials allow for precise fitting, meaning the bias will be 

small, but as the order increases, so does the variance. However, this increase is not constant. 

The asymptotic variance for m(x) only increases whenever p goes from odd to even. There is 

no loss when going from p = 0 to p = 1, but going from p = 1 to p = 2 will increase the 

asymptotic variance. This strongly suggests only considering odd-ordered polynomials, since 

the gain in bias appears to be “free”, with no associated cost in variance. (Fan and Gijbels, 

1995a, Ruppert and Wand, 1994) 

Fan and Gijbels (1995b) suggest an adaptive method for choosing the correct order of 

polyno- mial based on local factors, allowing p to vary for different points in the support of 
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the data. The resulting estimator has the property of being robust to bandwidth. This means 

that if the chosen bandwidth is too large, a higher order of polynomial will be chosen to better 

model the contours of the data. If the chosen bandwidth is too small, a lower order 

polynomial will be fit to help make the estimates numerically stable and reduce the variance. 

The algorithm for adaptive order fitting is outlined thus: 

Construct a grid of points, {xj : j = 1, . . . , ngrid} and choose a maximum order to be 

considered, pmax. Fit a standard polynomial regression of order pmax + a in order to obtain 

“pilot” estimates for .  Using these, estimate the MSE of the fit 

at each grid point for each order up to pmax and smooth across the grid points to get an 

estimate of the MSE as a function of x for each candidate p. Denote this function MSEp(x0). 

Then for every grid point, xj, choose the p that minimizes MSEp(xj), and denote this pj. 

In simulation, this method demonstrated the “robust to bandwidth” property. Estimates using 

the adaptive bandwidth selector were essentially the same across a variety of bandwidths 

differing by at most a factor of 3. Moreover, the adaptive algorithm outperformed the local 

linear regression in terms of mean absolute deviation error (MADE). Particularly, the 

adaptive order fit chose mostly linear fits except in regions of high curvature, which is where 

a higher-order fit would be desirable. This method also didn’t overfit, performing well in the 

case where the true function was a straight line and the true optimal fit was linear 

everywhere. 

Although adaptive order fitting is robust to bandwidth, consideration should still be given to 

choosing h. Fan and Gijbels (1995b) suggest a simple rule of thumb for computational 

efficiency. 

Choosing K 

Most of the results discussed in previous sections require assumptions about K. All assume 

that K is a symmetric, unimodal, and most assume the existence of some moments. Fan and 

Gijbels (1992) require all moments to exist while others only require a finite number. It is 

also common to assume a bounded support for K and that K be smooth, but these are not 

universal. The most commonly used kernel functions are the standard normal density and 

kernels of the form: 

 
where B(·, ·)  is the beta function.  For q  =  0, 1, 2, 3  respectively,  these are called the 

uniform, Epanechnikov, biweight, and triweight kernels. The triangular kernel, K(x) = (1 − 

|x|)I{|x|<1} is also used occasionally, but it lacks the smoothness property. (Wand and Jones, 

1995) In Section 1.3, kNN weighting schemes were discussed, and each of the above kernels 

can be modified to act as a kNN weight function by defining the bandwidth in the appropriate 

manner. Since the kernels mentioned above meet all of the standard assumptions, choosing 

kernel that is optimal in some sense may be desirable. The Epanechnikov kernel is optimal in 

the sense that it attains the minimum AMISE most quickly in terms of sample size, but the 

others, including the Gaussian are not very much slower. Thus, the decision may come down 

to the preference of the practitioner. For example, the Epanechnikov kernel has discontinuous 

first derivatives which may be undesirable, so the Gaussian kernel may be chosen instead. 

(Wand and Jones, 1995) 

Efficient computational methods for LPR 

Local polynomial regression is more computationally complex than standard regression tech- 
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niques, since a model must be fit for each observed data point. With “brute force” methods, it 

would take approximately n times longer to fit a local linear regression than it would take to 

fit a “global” linear regression even if a uniform kNN weighting function was used. When we 

add in kernel evaluations and complex algorithms for choosing bandwidths and orders, the 

problem has the potential to get computationally difficult quickly. Many methods for 

choosing h and p rely on pilot estimates or cross-validation. (Fan and Gijbels, 1995a, Prewitt 

and Lohr, 2006, Fan et al., 1996) This necessitates solving the LPR minimization repeatedly. 

Therefore, a good way to reduce overall computation time is to find a quick method for 

solving this minimization. 

The new bin counts and bin “averages” can now be written: 

 
Linear binning has the same computational requirements as simple binning, and since it is 

more precise (see Hall and Wand (1996)), it is clearly preferred to simple binning. Numerous 

packages exist for computing LPR in R, particularly, the locfit and KernSmooth packages 

(Loader, 2007, original by Matt Wand. R port by Brian Ripley., 2009), and the loess function. 

(R Development Core Team, 2009) Another useful reference for computational issues in LPR 

is Seifert et al. (1994). 

Extensions of local polynomial regression 

Algorithms have been developed to apply LPR to difficult types of data. Cleveland (1979) 

constructed a LPR estimator robust to outliers. (See 1.3.) Functions with jumps in their 

derivative, referred to as “changepoints” can also be difficult to estimate using traditional 

methods. It is possible to get a good estimator using local methods by choosing a variable 

bandwidth such that the “change points” are not included in the local fit. Spokoiny (1998) 

chooses the largest interval for each point, x0, such that the residuals from the resulting 

estimator are sufficiently small. This is checked using a test statistic that becomes large and 

enters the rejection region when the residuals are large. Intervals containing change points 

will have test statistics in the rejection region with probability close to 1, so the estimated 

function, m(x) will be based on intervals on which the true function is smooth.  

The variance for standard estimators can blow up if an insufficient number of data points are 

given positive weight (ie, if the chosen bandwidth is small), as can be the case for sparse or 

clustered data. The ridging estimator proposed by Seifert and Gasser (2000) deals with this 

problem by adding a shrinkage term to the estimator, ensuring that the conditional variance 

remains bounded. LPR can also be applied to derivative estimation. Li et al. (2003) propose a 

method for estimating the expectation of the derivative of a mean function. This is done using 

a sample average of the es- timated derivative function. The asymptotic distribution is 

derived, and the estimator is compared with existing techniques. 

Due to the difficulty in the implementation nonparametric models for multivariate data, an 

additivity assumption may be imposed. For d-dimensional data, we have: 

 
A popular method for fitting such a model is the back fitting algorithm, proposed by Buja et 

al. (1989) . In the context of local polynomial fitting, Opsomer and Ruppert (1997) give 

sufficient conditions for convergence of the backfitting algorithm and give the asymptotic 
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properties of the estimators for the d = 2 case. Existence and uniqueness for m1 and m2 is 

proved given a few standard assumptions 

LPR also has applications beyond smoothing. Alcala et al. (1999) use LPR to test whether a 

mean function belongs to a particular parametric family. Under the null hypothesis that m(x) 

belongs to the specified family, both parametric regression and LPR give consistent, unbiased 

estimates. A test statistic using these is constructed, and if the discrepancy is too great, H0 is 

rejected and we conclude that the function is not in the specified family. 

Kai et al. (2010) propose an alternative to LPR in the form of local composite quantile re- 

gression (CQR). While LPR is the best linear smoother (see Section 2.2), CQR is not a linear 

estimator, so it may still be an improvement. Indeed, for many common error distributions, 

this method appears to be more efficient asymptotically than LPR. LCQR can also be applied 

to deriva- tive estimation. 
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