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ABSTRACT 
Fractional calculus, the study of integrals and derivatives of arbitrary orders, has evolved 

from a mathematical curiosity to a robust framework with diverse applications in various 

scientific and engineering fields. This paper delves into the historical milestones, key 

contributors, fundamental theories, and modern applications of fractional calculus, providing 

a detailed account of its development and significance. 
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1. INTRODUCTION 

Fractional calculus is an extension of traditional calculus that involves derivatives and 

integrals of non-integer orders. The concept, which dates back over 300 years, has evolved 

significantly, impacting various areas such as control theory, viscoelasticity, and anomalous 

diffusion. In recent decades, fractional calculus has grown in popularity and use in fields as 

diverse as pure mathematics and science. However, fractional calculus has been around for a 

while. As far back as classical calculus is concerned, fractional calculus may be traced almost 

as far back as it is now. Students of modern fractional calculus would be mistaken to think 

that the course is just "calculus of fractions," despite the misleading name. Using an arbitrary 

sequence of integration and differentiation would improve the current practice of fractional 

calculus. To better understand the phrase "fractional calculus" and its misleading use in 

modern times, it is helpful to trace its origins. So, this article begins with a brief overview of 

the history of fractional calculus. A number of books and articles published in the last several 

years have dealt with fractional calculus and its history. Also, Ross has covered many aspects 

of the development of fractional calculus in his many writings. This chapter presents three 

parts of historical reflection, each of which shows a distinct stage in the development of 

fractional calculus. The purpose of this chapter is to offer a general outline of the 

development of fractional calculus rather than a detailed account of its origins and 

progression. This paper traces the historical trajectory of fractional calculus, highlighting its 

theoretical advancements and practical applications. 

2. LITERATURE REVIEWS  

The history of fractional calculus can be traced back to 1695 when Gottfried Wilhelm Leibniz 

and Guillaume 1de l'Hôpital corresponded about the possibility of derivatives of non-integer 

orders. Leibniz's curiosity about the derivative of order 1/2 and L'Hôpital's intrigued response 

marked the first recorded instance of fractional calculus. This initial exploration laid the 

conceptual groundwork for future developments in the field. 

In 1822, Joseph Fourier2, renowned for his work in heat transfer, briefly referenced fractional 

differentiation in his seminal work, "Théorie analytique de la chaleur." While not the primary 

focus, Fourier's mention highlighted the potential relevance of fractional calculus in physical 

processes, setting the stage for further investigation. 

Joseph Liouville3 significantly advanced the field in 1832 with his work "Mémoire sur le 

calcul des différentielles à indices quelconques." Liouville developed systematic methods for 

fractional integration and differentiation, introducing the Riemann-Liouville fractional 

integral and derivative. His contributions provided a rigorous mathematical framework, 

enabling the application of fractional calculus to various mathematical and physical 

problems. 

Paul Lévy, in his 1925 work "Calcul des Probabilités,"4 applied fractional calculus to 

probability theory, specifically in the context of stochastic processes. Lévy demonstrated how 

fractional derivatives could describe anomalous diffusion and long-range dependence in 

probability distributions, showcasing the utility of fractional calculus in modeling real-world 

phenomena that deviate from classical theories. 

Norbert Wiener 5further incorporated fractional calculus into the study of stochastic processes 

with his 1923 work "Differential space." He developed the concept of Wiener processes, 

essential in the theory of Brownian motion and other areas of probability and statistics. 
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Wiener's contributions underscored the applicability of fractional calculus in understanding 

complex systems with memory and hereditary properties. 

In 1949, Marcel Riesz 6extended the Riemann-Liouville integral to multi-dimensional spaces 

in his work on fractional partial differential equations. Riesz's contributions laid the 

groundwork for applying fractional calculus in various fields, including fluid dynamics and 

electromagnetism, broadening the scope of its applications. 

Kenneth S. Miller and Bertram Ross7 provided a comprehensive introduction to fractional 

calculus in their 1993 book, "An Introduction to the Fractional Calculus and Fractional 

Differential Equations." Their work served as a crucial resource for researchers and 

practitioners, offering detailed explanations and examples of fractional differential equations 

in diverse scientific fields, significantly advancing the understanding and application of 

fractional calculus. 

Igor Podlubny's 19998 book "Fractional Differential Equations" is considered a seminal work 

in the field. Podlubny offered an extensive review of fractional differential equations and 

their applications, introducing new methods for solving these equations. His work highlighted 

the relevance of fractional calculus in control theory, viscoelasticity, and anomalous 

diffusion, significantly advancing the field. 

Francesco Mainardi9, in his 1997 research "Fractional Calculus: Theory and Applications," 

explored the theoretical foundations and practical applications of fractional calculus in 

various physical phenomena. Focusing on viscoelastic models and anomalous diffusion 

processes, Mainardi demonstrated the versatility and effectiveness of fractional calculus in 

describing complex systems, encouraging further research in the field. 

Richard L. Magin highlighted the application of fractional calculus in bioengineering in his 

2006 work "Fractional Calculus in Bioengineering."10 Magin demonstrated how fractional 

derivatives could accurately describe the viscoelastic properties of biological tissues and the 

dynamics of complex biological processes. His research underscored the potential of 

fractional calculus to revolutionize biomedical engineering and enhance the understanding of 

biological phenomena. 

3. HISTORICAL MILESTONES 

Early Beginnings: Leibniz and L'Hôpital (1695) 

The inception of fractional calculus can be traced back to a letter written by Gottfried 

Wilhelm Leibniz to Guillaume de l'Hôpital in 1695. Leibniz, one of the co-inventors of 

calculus, pondered the possibility and meaning of a derivative of non-integer order. He 

specifically questioned what a derivative of order 1/2 would imply. This inquiry was 

groundbreaking, as it challenged the traditional notions of calculus, which were firmly rooted 

in integer-order operations. L'Hôpital, a prominent mathematician of the time, responded 

with curiosity and did not dismiss the idea. Instead, he expressed interest and openness to 

exploring the concept further. This correspondence marks the first recorded instance of 

fractional calculus being discussed, setting the stage for future mathematical inquiries into 

derivatives and integrals of arbitrary orders. 

The 18th Century: Euler and Fourier 

During the 18th century, significant contributions to the development of fractional calculus 

were made by mathematicians such as Leonhard Euler and Joseph Fourier. Euler, renowned 

for his extensive work in various branches of mathematics, explored the concept of fractional 

calculus in the context of series expansions and special functions. His investigations included 

the generalization of exponential functions and the Gamma function, which plays a crucial 

role in defining factorials for non-integer values. Euler's work hinted at the broader 

applicability of fractional calculus beyond integer-order operations. 

Joseph Fourier, known for his ground-breaking work on heat conduction, made a notable 

contribution to fractional calculus in his 1822 publication, "Théorie analytique de la chaleur." 

While Fourier's primary focus was on integer-order derivatives in his heat equation, he 

briefly mentioned the concept of fractional differentiation. Fourier's acknowledgment of 

fractional calculus in the study of heat transfer was significant as it suggested that fractional 
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derivatives could be useful in modeling physical processes, thereby laying the groundwork 

for future explorations and applications. 

The 19th Century: Liouville's Formalization 

The 19th century marked a pivotal period in the formalization of fractional calculus, 

primarily through the work of Joseph Liouville. In the 1830s, Liouville systematically 

developed methods for fractional integration and differentiation, providing a rigorous 

mathematical framework that would enable further theoretical and practical developments. 

Liouville's contributions included the introduction of the Riemann-Liouville fractional 

integral and derivative, named in part after Bernhard Riemann, who also contributed to the 

foundations of calculus. 

Liouville's approach to fractional calculus involved extending the definition of the integral to 

non-integer orders. He defined the fractional integral of order α for a function f(t) as: 

 
where Γ(α) is the Gamma function. This definition allowed for the integration of functions to 

non-integer extents, thus generalizing the concept of repeated integration. 

Furthermore, Liouville defined the corresponding fractional derivative through this integral: 

 
for n−1<α <n. This definition linked the fractional derivative to its integral counterpart, 

ensuring consistency with traditional calculus when α is an integer. 

Liouville's work provided a solid mathematical foundation for fractional calculus, enabling 

its application in various fields of science and engineering. His formalization allowed 

mathematicians and scientists to explore the potential of fractional derivatives and integrals in 

modeling complex systems with memory and hereditary properties, which are not adequately 

described by integer-order calculus alone. In summary, the early contributions of Leibniz and 

L'Hôpital, followed by the advancements made by Euler and Fourier, and the formalization 

efforts by Liouville, collectively laid the groundwork for the development of fractional 

calculus. These historical milestones highlight the gradual evolution of fractional calculus 

from a theoretical curiosity to a rigorous mathematical framework with wide-ranging 

applications. 

The 20th Century: From Theory to Applications 

The 20th century witnessed a transition of fractional calculus from theoretical investigations 

to practical applications. Notable contributions came from mathematicians and scientists such 

as Paul Lévy, who applied fractional calculus to probability theory, and Norbert Wiener, who 

incorporated it into the study of stochastic processes. During this period, key definitions of 

fractional derivatives, including the Riemann-Liouville, Grunwald-Letnikov, and Caputo 

derivatives, were formalized. 

4. FUNDAMENTAL THEORIES 

Riemann-Liouville Fractional Integral and Derivative 

The Riemann-Liouville fractional integral and derivative are foundational concepts in the 

theory of fractional calculus, providing a rigorous framework for extending the traditional 

notions of integration and differentiation to non-integer orders. This section delves into the 

definitions, properties, and significance of these concepts. 

A. Riemann-Liouville Fractional Integral 

The Riemann-Liouville fractional integral of order α>0 for a function f(t) is defined as: 

Iαf(t) =
1

Γ(α)
∫  

t

0

(t − τ)α−1f(τ)dτ 

Here, Γ(α) is the Gamma function, which generalizes the factorial function to non-integer 

values: 

 
The Riemann-Liouville fractional integral can be viewed as an extension of the traditional n-

fold integral, where n is a positive integer. For integer n, the n-fold integral is given by: 
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Inf(t) = ∫  
t

0

∫  
τn

0

⋯∫  
τ2

0

f(τ1)dτ1dτ2⋯dτn 

When α is an integer, the Riemann-Liouville fractional integral reduces to the traditional 

repeated integration. For non-integer α, it represents a "fractional" accumulation of the 

function f(t), providing a continuous spectrum of integration orders. 

Significance of the Riemann-Liouville Fractional Integral and Derivative 

The Riemann-Liouville fractional integral and derivative provide a robust mathematical 

framework for extending traditional calculus to fractional orders. This framework has been 

instrumental in various fields, including: 

Physics: Modeling anomalous diffusion, viscoelastic materials, and other processes with 

memory effects. 

Engineering: Designing fractional-order control systems, improving the performance of 

controllers by incorporating fractional dynamics. 

Finance: Analyzing financial markets and modeling price dynamics using fractional 

stochastic processes. 

Biology: Describing the complex dynamics of biological systems, such as the viscoelastic 

properties of tissues and the anomalous diffusion of particles in heterogeneous media. 

B. Grunwald-Letnikov Fractional Derivative 

The Grunwald-Letnikov definition approximates the fractional derivative using a limiting 

process similar to the traditional definition of a derivative: 

Dαf(t) = lim
h→0

 
1

hα
∑  

[t/h⌋

k=0

(−1)k(
α

k
)f(t − kh) 

This approach connects the fractional derivative to the discrete calculus, making it suitable 

for numerical implementations. 

Discrete Approximation: The Grünwald-Letnikov derivative is a discrete approximation, 

making it particularly suitable for numerical implementations. 

Advantages 

Simplicity and Flexibility: 

Simple Formulation: The definition involves straightforward finite differences, which are 

easy to implement and understand. 

Numerical Implementation: Its discrete nature makes it highly suitable for numerical 

methods and simulations, which are crucial in practical applications. 

Applications in Differential Equations: 

Numerical Solutions: The Grünwald-Letnikov approach is often used to obtain numerical 

solutions to fractional differential equations, offering a flexible and accurate method for 

approximating solutions. 

Modeling Real-World Systems: 

Memory Effects: Like other fractional derivatives, the Grünwald-Letnikov derivative can 

model systems with memory effects and hereditary properties, making it useful in various 

scientific and engineering fields. 

Specific Applications 

Control Theory: 

Fractional-Order Systems: Used in the analysis and control of fractional-order systems, 

providing a tool to model and control systems with non-integer dynamics. 

Signal Processing: 

Discrete-Time Systems: The Grünwald-Letnikov derivative is particularly useful in discrete-

time signal processing, where signals are inherently sampled and processed in discrete 

intervals. 

Viscoelasticity: 

Discrete Models: In the field of viscoelasticity, this derivative helps create discrete models of 

materials that exhibit complex time-dependent behaviors, enabling better simulation and 

prediction of material responses. 
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Anomalous Diffusion: 

Fractional Diffusion: Used to model anomalous diffusion processes in various fields such as 

physics and biology, where the classical diffusion equation is not adequate. 

Significance in Research and Applications 

Numerical Methods: 

Discrete Nature: The Grünwald-Letnikov derivative’s discrete nature makes it a cornerstone 

in numerical methods for solving fractional differential equations, facilitating the 

implementation of algorithms and simulations. 

Versatility: 

Wide Application: Its simplicity and flexibility make it applicable across a wide range of 

fields, from control theory to material science, and from signal processing to biological 

modeling. 

Foundation for Other Methods: 

Building Block: It serves as a foundation for developing other numerical methods and 

approximations in fractional calculus, contributing to the advancement of computational 

techniques. 

C. Caputo Fractional Derivative 

The Caputo derivative is particularly useful in initial value problems and is defined as: 

for n−1<α< n. The Caputo derivative is advantageous because it allows for the inclusion of 

initial conditions in a manner similar to integer-order differential equations. 

Dαf(t) =
1

Γ(n − α)
∫  

t

0

(t − τ)n−α−1f (n)(τ)dτ 

Initial Conditions: The Caputo derivative allows for the use of traditional initial conditions 

(integer-order derivatives) which are often more intuitive and easier to implement compared 

to the Riemann-Liouville derivative. 

Advantages 

1. Compatibility with Initial Conditions: 

o Traditional Initial Conditions: Caputo derivatives use integer-order 

derivatives for initial conditions, making them more practical for physical and engineering 

applications where initial states are often given in terms of integer-order derivatives. 

o Ease of Interpretation: The use of traditional initial conditions aligns with 

classical methods, facilitating easier interpretation and application in solving differential 

equations. 

2. Applications in Differential Equations: 

o Fractional Differential Equations: Caputo derivatives are widely used in 

solving fractional differential equations (FDEs) due to their practical initial conditions. This 

makes them suitable for modeling physical processes with memory and hereditary properties. 

o Better Representation: They provide a better representation of processes that 

exhibit anomalous diffusion, viscoelasticity, and other phenomena where the system's history 

influences its future behavior. 

3. Modeling Real-World Systems: 

o Memory Effects: Caputo derivatives are particularly effective in modeling 

systems with memory effects, such as materials with viscoelastic properties and biological 

systems exhibiting anomalous diffusion. 

o Hereditary Properties: They capture hereditary properties in control systems, 

improving the design and performance of fractional-order controllers. 

Specific Applications 

1. Control Theory: 

o Fractional-Order Controllers: Caputo derivatives are used to design 

fractional-order PID controllers, offering enhanced flexibility and performance over 

traditional controllers by accurately modeling systems with memory and hereditary 

characteristics. 

2. Viscoelasticity: 
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o Material Behavior: In viscoelasticity, Caputo derivatives model the stress-

strain relationship more accurately for materials that exhibit both creep and stress relaxation 

over time. 

3. Anomalous Diffusion: 

o Biological Systems: They are used to model anomalous diffusion in biological 

systems, such as the movement of cells or particles in heterogeneous media, where classical 

diffusion equations fail to capture the observed behaviors. 

4. Signal Processing: 

o Fractional Filters: In signal processing, Caputo derivatives help design 

fractional-order filters that offer improved frequency response characteristics and are better 

suited for systems with long-term memory effects. 

Significance in Research and Applications 

The Caputo fractional derivative's ability to handle traditional initial conditions and its 

applicability to a wide range of real-world systems make it a crucial tool in fractional 

calculus. It bridges the gap between classical and fractional calculus, providing a more 

comprehensive framework for modeling and analyzing complex dynamic systems. This 

significance extends across various disciplines, including engineering, physics, biology, and 

finance, where accurately capturing the effects of memory and hereditary properties is 

essential for developing robust models and solutions. 

5. MODERN APPLICATIONS 

I. Control Theory 

Fractional calculus plays a significant role in control theory, especially in designing 

controllers for systems that exhibit memory effects or hereditary properties. 

1. Fractional PID Controller: 

Definition: A Fractional PID controller is a generalization of the traditional PID controller, 

which uses fractional-order integrals and derivatives. It is denoted as PIDλμ, λ and μ are the 

orders of the fractional integral and derivative, respectively. 

Advantages: 

Flexibility: Provides more tuning parameters (λ and μ) compared to the classical PID 

controller, allowing for better adaptation to the dynamic behavior of complex systems. 

Performance: Often exhibits superior performance in terms of robustness and stability, 

especially in systems with long memory or hereditary characteristics. 

Applications: Used in various industries such as aerospace, automotive, and robotics, where 

precise control is crucial. 

II. Viscoelasticity 

Fractional calculus offers a powerful framework for modeling the viscoelastic behavior of 

materials, which exhibit both elastic and viscous characteristics over time. 

1. Fractional Derivative Models: 

Definition: Fractional derivative models incorporate derivatives of non-integer orders to 

describe the viscoelastic behavior of materials. 

Advantages: 

Accuracy: Provides a more accurate representation of materials that exhibit both creep (time-

dependent deformation under constant stress) and stress relaxation (time-dependent decrease 

in stress under constant strain). 

Intermediate States: Captures the intermediate states between purely elastic (instantaneous 

response) and purely viscous (steady flow) behavior. 

Applications: Utilized in fields such as material science, biomechanics, and polymer science 

to study and predict the behavior of complex materials. 

III. Anomalous Diffusion 

Fractional calculus is essential in modeling anomalous diffusion processes where the 

diffusion rate deviates from the classical Brownian motion. 

1. Fractional Diffusion Equations: 

Definition: Fractional diffusion equations use fractional-order derivatives to describe the 

diffusion process. 
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Advantages: 

Sub-Diffusion and Super-Diffusion: Capable of modeling both sub-diffusive (slower than 

normal diffusion) and super-diffusive (faster than normal diffusion) behaviors. 

Heterogeneous Media: Provides a better understanding of diffusion through heterogeneous 

media, which is common in biological and physical systems. 

Applications: Widely used in biology to model cell movement, in physics to describe particle 

transport in porous media, and in finance to represent anomalous diffusion in stock prices. 

IV. Electrical Engineering and Signal Processing 

Fractional calculus has numerous applications in electrical engineering and signal processing, 

enhancing the analysis and design of circuits and filters. 

1. Fractional-Order Filters: 

Definition: Filters that use fractional-order integrals and derivatives in their design. 

Advantages: 

Frequency Response: Offers improved control over the frequency response characteristics, 

leading to better performance in specific applications. 

Long-Term Memory: Useful in modeling systems with long-term memory effects, such as 

certain electrochemical processes. 

Applications: Applied in signal processing for noise reduction, in communications for 

filtering signals, and in control systems for shaping the dynamic response. 

6. CONCLUSION 

Fractional calculus has evolved from a theoretical curiosity to a robust mathematical 

framework with diverse applications. The development of key definitions and the 

contributions of numerous mathematicians have paved the way for its use in modern science 

and engineering. As research continues, the potential applications of fractional calculus are 

likely to expand, offering new insights and solutions to complex problems across various 

disciplines. 
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