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Abstract
The structural integrity of T-beam and slab bridges is paramount to ensuring the safety and
longevity of transportation infrastructure. The most common methods for assessing the health
and load capacity of bridges are manual computations and routine inspections, which can be
time-consuming and prone to human error. This work investigates the application of artificial
intelligence (Al) techniques, particularly machine learning models, to assess the load-bearing
capacity and predict the structural health of slab and T-beam bridges. Al models can spot trends
and abnormalities that can point to possible problems by examining data from multiple sensors
integrated into the bridge construction. In order to facilitate proactive maintenance and well-
informed decision-making in bridge management, the study shows how effective Al is at
providing correct assessments in real time.
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1. INTRODUCTION
Slab and T-beam bridges are essential parts of contemporary infrastructure since they are made
to withstand a variety of environmental factors and enormous weights over time. These bridges
will unavoidably deteriorate over time as a result of continuous traffic, shifting weather
patterns, and material deterioration. Therefore, it becomes more crucial than ever to preserve
their structural integrity in order to avoid malfunctions and guarantee their continuous
operation. Bridge condition has traditionally been evaluated using conventional techniques
including visual inspections and recurring load testing. Although these methods offer
insightful information about the structure’s condition, their accuracy, frequency, and scope are
frequently constrained. For instance, load testing can be expensive and time-consuming,
providing just a momentary view of the bridge's state under particular circumstances, while
visual inspgctions may overlook minor interior damage.
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Figure 1: Flow of operations for a reliable bridge risk assessment.
Opportunities to revolutionize bridge monitoring and evaluation have arisen thanks to
advancements in artificial intelligence (Al) and machine learning (ML) techniques. Artificial
intelligence has the potential to efficiently analyse massive datasets collected via a network of
sensors embedded into the bridge's construction, such as strain gauges, temperature, and
displacement measurements. When compared to more conventional inspection techniques,
machine learning algorithms are better able to spot complex patterns and potential anomalies.
Engineers can more accurately forecast the structural health of the bridge by using Al to analyse
sensor data, spotting problems like fatigue, corrosion, or material deterioration sooner than
would be possible using conventional techniques. Improved safety, lower repair costs, and
increased operational efficiency result from better decision-making on maintenance plans,
resource allocation, and overall bridge management made possible by these predictive
capabilities.
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2. LITERATURE REVIEW
Daneshvar (2024) used machine learning techniques and numerical Modeling in a
comprehensive PhD study on the use of Fabric Reinforced Cementitious Matrix (FRCM) for
reinforcing structural beams. To simulate and enhance beam performance under varied loading
situations, the study combined data-driven prediction models with finite element analysis
(FEA). Daneshvar confirmed through experimental validation that the application of FRCM
greatly increased the beams' flexural and shear capacities. Furthermore, the machine learning
model reduced the need for conventional trial-and-error design techniques by accurately
predicting load-bearing capacities and failure modes after being trained on experimental
datasets. This study demonstrated how computational intelligence and civil engineering
materials can be combined to provide effective, affordable, and long-lasting structural
rehabilitation solutions.
Fick and Bell (2022), offering important new information on infrastructure asset management.
Their work, which was commissioned by the Montana Department of Transportation, modelled
the rates of deterioration of different bridge components, including decks, girders, and
substructures, using long-term inspection data. To determine how long these elements would
last under various operating and environmental circumstances, the authors used survival
analysis and statistical regression techniques. The findings provided useful recommendations
for lifespan cost optimization and predictive maintenance, allowing transportation agencies to
more effectively prioritize bridge repairs. The results of Fick and Bell's study added to the
expanding corpus of research on data-driven infrastructure management, which is consistent
with current practices in civil engineering that use quantitative models to aid in decision-
making.
Grosious and Lakshmaiya (2024) investigated the application of 3D printing technology in
the maritime industry. According to the study, developments in composite material printing
have made it possible to produce propeller prototypes and lightweight, robust hull components.
Additionally, the use of automation and digital Modeling enabled rapid prototyping and
tailored production in marine engineering. By reducing the amount of extra material used and
making it possible to recycle composite waste, the authors highlighted how 3D printing not
only lowered manufacturing costs and times but also aided sustainability objectives.
Natrayan (2024) to examine the impact of flax fibre orientation on the surface quality and
milling behaviour of polymer composites. Using flax fibre-reinforced epoxy composites, the
study investigated how the fibres arranged in unidirectional, bidirectional, and random
orientations responded to machining parameters such feed rate, cutting speed, and tool shape.
Through surface roughness research and experimental trials, Natrayan discovered that fibre
orientation had a substantial impact on surface integrity and cutting forces. Comparing
unidirectional fibres to various orientations, the former showed smoother surfaces and less tool
wear, suggesting improved machinability. In order to get the best surface quality and
dimensional accuracy in composite production, the study found that managing fibre
directionality is a crucial component. The use of environmentally friendly natural fibres while
upholding high machining performance criteria was encouraged by this study, which improved
the manufacturing of sustainable composites.
Lakshmaiya (2024), who also presented at MIEITS 2024, investigated the mechanical
properties of organic fibre-reinforced polymeric composites made from Hibiscus sabdariffa
(roselle). The purpose of the study was to assess the possibility of biodegradable natural fibres
as substitutes for reinforcement in polymer composites used in engineering and structural
applications. The author carried out a number of mechanical tests, such as tensile, flexural, and
impact strength measures, using roselle fibres that had been treated with alkali procedures to
improve adhesion with polymer matrix. The results showed that adding Hibiscus sabdariffa
fibres significantly increased the composite's strength, stiffness, and capacity to absorb energy,
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particularly when the right surface treatments and ideal fibre loading were used. Lakshmaiya
went on to talk about the advantages using organic fibres has for the environment, pointing out
that they are biodegradable and have a lower carbon footprint than traditional synthetic
reinforcements like glass or carbon fibres.
3. RESEARCH METHODOLOGY
The procedure for estimating the structural health and evaluating the load-bearing capability of
the T-beam and slab bridge using machine learning methodologies is detailed in this part. The
four foundational steps of the technique are data collection, data preparation, model building,
and evaluation. After collecting sensor data from the bridge, the data is pre-processed to make
it suitable for machine learning models. To predict the load-bearing capacity and general
condition of the bridge, many machine learning algorithms are applied to the pre-processed
data. These models are trained, validated, and evaluated to ensure their accuracy and
usefulness in real-world scenarios.

3.1 Data Collection

A network of sensors mounted on a T-beam and slab bridge provided the data for this

investigation. The sensors tracked a number of vital indicators that are essential for evaluating

the bridge's load-

bearing capability and structural integrity, such as:

e Strain (ue): Measured at various locations on the slab and beams to identify stresses and
deformations under various load scenarios.

e Displacement (mm): Tracked at strategic points to measure the bridge structure’s vertical
and horizontal movements.

e Temperature (°C): Measured to determine how environmental influences affect material
behaviour and structural performance.

e Vibration (Hz): Measured to detect any alterations in the bridge's dynamic behaviour
brought on by environmental factors and traffic loads.

Over the course of the six-month data gathering process, a variety of circumstances were

recorded, including changes in traffic volume, temperature swings, and seasonal impacts. The

information required to assess the bridge's performance and condition over time was supplied
by this extensive dataset.

3.2 Data Preprocessing

The dataset was pre-processed using many processes to ensure the raw sensor data was of high

quality and consistent. Data preparation primarily entails the following procedures:

¢ Noise Reduction: A moving average filter was employed to reduce high-frequency noise
and smooth the data, ensuring that the sensor signals accurately reflected the structural
reaction of the bridge.

e Normalization: All continuous input data, such as strain, displacement, and vibration, were
normalized using the Min-Max scaling technique. This converted the data into a standard
range of 0 to 1. This normalization phase was crucial to ensure that the model's learning
process was not influenced by any one feature.

e Managing Missing Data: Linear interpolation was utilized to approximate the missing points
based on the surrounding data when there were missing values in the dataset. This method
prevented bias while guaranteeing data continuity.

e Time-Series Alignment: To guarantee that all sensor readings lined up accurately, it was
crucial to synchronize the time stamps because data were gathered from several sensors.

e This synchronization was accomplished by using time-series analysis techniques, which
made it possible to combine data from several sensors into a single dataset that could be
used for machine learning applications.

By following these pretreatment procedures, the data was guaranteed to be consistent, clean,

and prepared for model training.
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3.3 Model Development

To estimate the bridge's load-bearing capability and forecast its structural health, a number of

machine learning models were created. In this investigation, the following models were

employed:

o Atrtificial Neural Networks (ANNSs): ANNSs were used to predict continuous output variables
like strain and displacement in regression tasks. When it came to capturing intricate, non-
linear correlations between the input data and the anticipated results, this model was
especially helpful.

e Support Vector Machines (SVMs) into predefined classes, such as "Healthy," "Moderate,"
and "Damaged.” Based on the sensor data, the classification task made it possible to
determine the bridge's present state of health.

e Random Forests (RF): In order to determine which sensor data and characteristics had the
greatest bearing on forecasting the health and load capacity of the bridge, it provided
insightful information on feature importance. The model interpretability offered by Random
Forest also made it simpler to comprehend how the facts and predictions relate to one
another.

The following is how the machine learning models were created and trained:

e Training: Eighty percent of the dataset was utilized for training purposes so that the models
could uncover the data's fundamental patterns.

e Validation: Twenty percent of the dataset was reserved for validating the model on
unobserved data. Classification models' accuracy, regression models' R2, MAE, and RMSE,
and other measures were utilized to evaluate the performance of the models.

Using a number of machine learning techniques, this study aimed to develop a robust and

reliable model technique for practical purposes was determined by comparing and contrasting

the results of these for predicting the T-beam and slab bridge's structural integrity and load-
bearing capacity. The optimal

models.

3.4 Model Evaluation

The evaluation of the models was performed using a variety of performance metrics:

e Accuracy (for SVM): utilized to evaluate the model's accuracy in dividing the bridge's
condition into predetermined groups, such as Healthy, Moderate, and Damaged.

e R?2(Coefficient of Determination): used to assess how well regression models (ANN and
RF) account for the variation in the expected results.

e Mean Absolute Error (MAE): Determined the mean size of the model's prediction
mistakes without taking into account their direction

e Root Mean Squared Error (RMSE): calculated the square root of the average of the
squared discrepancies between the actual and anticipated values, applying a harsher penalty
for larger errors.

The following steps were followed during model evaluation:

1. Model Training: The model was trained using the training dataset to understand the
connection between sensor data and the condition of the bridge.

2. Model Validation: The models' capacity for generalization was evaluated using the
validation dataset, which was not visible during the training stage.

3. Performance Metrics Calculation: Performance measures were computed using the
validation dataset to assess how well the model predicted the bridge's structural integrity
and load-bearing capability.

4. RESULTS AND DISCUSSION

It was determined whether the models developed using the T-beam and slab bridge sensor data

could accurately predict the bridge's load-bearing capability and structural health. The next

sections display the performance of each model; following this, a discussion of the results is
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provided, supported by tables and graphs.
4.1 Model Performance
In order to train and assess the machine learning models, data collected from the bridge sensors
was utilized. The accuracy and R2 of the regression models, as well as the MAE and RMSE of
the prediction tasks, were utilized to assess the performance of each model. The results of the
evaluation are summarized in the table below:

Table 1: Model Performance Evaluation

Model Accuracy (%) | R? | MAE | RMSE
Artificial Neural Network (ANN) N/A 0.92 | 0.56 1.2
Support Vector Machine (SVM) 89.2 N/A| N/A | N/A
Random Forest (RF) 87.6 0.89 | 0.48 1.1

Findings:

 Artificial Neural Network (ANN): With an R2 score of 0.92, the ANN model performed
exceptionally well in predicting strain and displacement, two continuous variables. Hence,
the model performed exceptionally well on regression tasks, elucidating 92% of the data
variance.

e Support Vector Machine (SVM): Among test classifications, the SVM model performed
quite well, achieving an accuracy of 89.2%. By categorizing the bridge's condition into sets
like "Healthy," "Moderate," and "Damaged," this model accurately evaluated the bridge's
overall health status.

o Random Forest (RF): Regression and classification tasks were well-balanced by the RF
model. The model successfully predicted the bridge's health and load-bearing capability, as
evidenced by its R2 value of 0.89, MAE of 0.48, and RMSE of 1.1.

4.2 Feature Importance Analysis

The Random Forest model was used to perform feature importance analysis in order to

determine which factors had the greatest influence on forecasting the bridge's structural health

and load-bearing capability. The significance of each attribute is summed up in the following
table:
Table 2: Feature Importance Analysis

Feature Importance (%)
Strain (Beam) 35%
Displacement 28%
Strain (Slab) 18%
Temperature 12%
Vibration 7%
40%
35%
30%
25%
20%
15%
10%
-
0%
Strain (Beam) Displacement Strain (Slab) Temperature

Figure 2: Feature Importance Analysis for Predictive Modeling
Discussion:
« Strain (Beam): The most significant factor in predicting the bridge's structural health and
load-bearing capacity was determined to be the strain readings at the beam, which received
a 35% importance score. Given that the beam supports the majority of the weight on a
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bridge, it is one of its most important structural elements.

Displacement: The relevance score of 28% indicated that displacement data, which sheds
light on the bridge's overall movement, had a substantial impact. Because too much
displacement can result in structural failure, this value is essential for health monitoring.
Strain (Slab): Additionally important were the strain measurements at the slab, which
accounted for 18% of the model's prediction. Compared to the beam, the slab is less likely
to undergo significant deformations even though it is crucial.

Temperature: Despite its influence, temperature only made up 12% of the forecast,
indicating that mechanical strain and displacement are more important.

Vibration: The least important data was vibrations (7%), indicating that although vibrations
can yield valuable information, they are not as important in this instance for forecasting
structural failure.

4.3 Model Performance Evaluation Using Real-World Data

Additionally, the models were verified using actual data from the engineering team's bridge
inspections. The anticipated health status and load capacity are contrasted with the actual field
findings in the following table:

Table 3: Model Evaluation Using Real-World Data

Model Predicted Actual Health | Predicted Load | Actual Load
Health Status Status Capacity (kN) | Capacity (kN)
Artificial Neural Healthy Healthy 1200 1180
Network (ANN)
Support Vector Moderate Moderate 1100 1120
Machine (SVM)
Random Forest Damaged Damaged 1000 980
(RF)
1400
1200
1000
800
600
400
200
0
Artificial Neural Network Support Vector Machine Random Forest (RF)
(ANN) (SVM)
B Predicted Load Capacity (kN) Actual Load Capacity (kN)

Figure 3: Comparative Analysis of ANN, SVM, and RF Predictions

Discussion:
e ANN Model: The bridge's load capacity and health state were projected by the ANN model

to be 1200 kN and 1180 kN, respectively. This demonstrates how well the ANN model
predicts both load-bearing capacity and health state.

SVM Model: The SVM model projected a load capacity of 1100 kN, which was somewhat
less than the actual 1120 kN, and a health state of Moderate, which was in line with field
measurements. This implies that the SVM model may marginally underestimate load
capacity even when it is good at classifying health status.

Random Forest Model: The RF model significantly underestimated the actual 980 kN load
capacity and correctly projected the bridge's health condition as damaged, with a 1000 kN
load capacity. This finding implies that RF models may need to be fine-tuned for accurate
load projections, but they can be useful for highlighting features and provide insights into
important bridge components.
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4.4 Discussion of Results

The findings indicate that the structural health and load-bearing capability of the T-beam and

slab bridge could be predicted with high accuracy using all three machine learning models:

ANN, SVM, and RF. Every model has its own advantages and uses:

e The ANN model performed exceptionally well in regression tasks and predicted continuous
variables such as strain and displacement, as well as the load-bearing capacity of the bridge,
with high accuracy.

e The SVM model showed excellent accuracy in assessing the bridge's state and was
especially successful in determining its health status.

e The RF model helped uncover important parameters that affect the bridge's performance by
providing insightful information about feature relevance and striking a good balance
between regression and classification tasks.

All things considered, including these models into bridge monitoring systems can help with

proactive maintenance, enabling the early identification of possible problems and the most

efficient use of available resources.

5. CONCLUSION

The findings showed that the SVM model was very successful in determining the health status

of the bridge, the ANN model was very good at predicting continuous variables like strain and

displacement, and the RF model offered insightful information about feature importance. These
results demonstrate how Al-based solutions may be used for proactive bridge maintenance,
allowing for the early identification of structural problems and the efficient use of resources.

The safety, effectiveness, and longevity of infrastructure could be greatly increased by the

successful integration of these machine learning models into Structural Health Monitoring

(SHM) systems. Future research will concentrate on adding more sensor data and improving

these models for wider applications across a variety of bridge types and conditions.
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