International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2018, Submitted in January 2018, iajesm2014@gmail.com

Study On Systematic Literature Review Related to Software
Process Simulation Modeling

Basavaraj U, Assistant Professor, Department of Computer Science, Government First Grade College and PG Centre
Thenkinidiyur Udupi, Karnataka India, Email- ubkottur@gmail.com

Abstract
Changes and continuous progress in logistics and productive systems make the realization of
improvements in decision making necessary. Simulation is a good support tool for this type
of decisions because it allows reproducing processes virtually to study their behavior, to
analyze the impact of possible changes or to compare different design alternatives without the
high cost of scale experiments. Although process simulation is usually focused on industrial
processes, over the last two decades, new proposals have emerged to bring simulation
techniques into software engineering. This paper describes a Systematic Literature Review
(SLR) which returned 8070 papers (published from 2013 to 2017) by a systematic search in 4
digital libraries. After conducting this SLR, 36 Software Process Simulation Modeling
(SPSM) works were selected as primary studies and were documented following a specific
characterization scheme. This scheme allows characterizing each proposal according to the
paradigm used and its technology base as well as its future line of work. Our purpose is to
identify trends and directions for future research on SPSM after identifying and studying
which proposals in this topic have been defined and the relationships and dependencies
between these proposals in the last five years. After finishing this review, it is possible to
conclude that SPSM continues to be a topic that is very much addressed by the scientific
community, but each contribution has been proposed with particular goals. This review also
concludes that Agent-Based Simulation and System Dynamics paradigm is increasing and
decreasing, respectively, its trend among SPSM proposals in the last five years. Regarding
Discrete-Event Simulation paradigm, it seems that it is strengthening its position among
research community in recent years to design new approaches.
Introduction
Software testing is the process of executing software to determine whether it matches its
specification and executes in its target environment (Whittaker, 2000). This process is not
complete. Researchers have acknowledged the limitations of testing for a long time as
vindicated by following famous statement from Edsger Dijkstra’s Turing Lecture (Dijkstra,
1972). The famous statement is “Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for showing their absence”. This means that
all software at the end of the day may be released with some faults. This makes some
questions crop up on our minds which include questions like Why do we test software, if it is
released with faults? How much testing needs to be done before its release? When do we
decide to stop testing? When do we release the software? Will the lab-tested software
faithfully run in the field environment? Have we covered the randomness and uncertainty of
operational environment while testing the software under controlled settings, so on and so
forth? Thus it necessitates the importance of attention that needs to be lent to the software
development process. In (Jeske & Zhang, 2005) the authors present a detailed account of
some of the formidable obstacles that beset the practice of the theory.
During the progress of testing the management is expected to systematically allocate
resources so as to maximize reliability and minimize potential operational failure penalties
(Lin & C.Y.Huang, 2008). This can be done by optimizing the resource allocations and
consumptions, improving test. Effort, introducing state-of-art techniques and tools, upgrading
staff skills and re-staffing etc. However, making these decisions is not easy. Scheduling
deadline pressures or other ongoing projects may affect the manner in which testing resources
could be allocated. All these factors in turn show up in terms of variations on testing effort
consumption rate (Lin & C.Y.Huang, 2008). Thus testing effort could change and needs to be
studied for minimization of costs and not missing deadlines. Use of SRGMs provides an
opportunity to understand and improve the testing phase. Fault detection rate (FDR) functions
have also been studied to understand the variations in failure rate per error. According to
(Zhao, et al., 2006) fault detection is used for the effectiveness of fault detection capability of

(E 1AJESM

Volume-9, Issue-II 1

mailto:iajesm2014@gmail.com
mailto:ubkottur@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2018, Submitted in January 2018, iajesm2014@gmail.com
testing techniques and tools. Moreover, FDR is dependent on factors like efficiency of fault
discovery, inspection rate, fault density and testing—effort, in the beginning of testing. In
middle of testing, it depends on factors which include program size, code expansion factor,
failure to fault relationship, skill of testers, and reliability of software. Thus, FDR is
changeable (Huang, 2005b). Different types of FDRs have been studied in reliability
modeling. For example a bath-tub shaped FRD (Nadarajah, 2009), Vtub-shaped FRD (Pham,
2013), Loglog fault-detection rate (Pham, 2014). It may be noted that bathtub shaped FDR;
we have the infant mortality period followed by useful life of system where system has a
constant rate failure, followed by wear out period where system slows down more and more
as more of wear out sets in. Bathtub shaped failure rate is obtained by using Weibull
distribution (Pham, 2006) (Nadarajah, 2009), (Pham, 2013), (Pham, 2014).The other Vtub
shaped FRD is obtained by using a log-log distribution and a VVtub shaped curve has the usual
infant mortality period followed by useful life of system where system experiences failures at
a relatively low increasing rate which is not constant rate failure, followed by an increased
failure rate leads to aging of system (Pham, 2006) (Pham, 2013), (Pham, 2014). These papers

present these models under NHPP framework.

Review of literature:

The contemporary computing professional works in an environment where programs are
thousands or millions of lines long, are often extensively modified and maintained rather than
constructed, are manipulated in a tool-rich environment, and where work is usually a team
effort (Mulder, Haines, Prey & Lidtke, 1995). Computer scientists are not well prepared for
this contemporary environment according to Prey (1996) because their preparatory training
usually focuses on the construction of small programs (programming-in-the-small) and
provides little experience in complex software development. In contrast, the development of
large systems in an efficient and timely manner requires a team effort, and the more
complicated the problem, the larger the team needed to solve it. Another contributing factor
to the need for team development is that domain-specific expertise tends to be localized and
geographically distributed. Studies have shown that, particularly when such developers are
dispersed, their success depends critically on their ability to use effective groupware
(Nunamaker, 1999). Such factors have made collaboration in systems development a
necessity, not merely a technically feasible option. The emergence of the World Wide Web
has fortunately made geographically distributed collaborative systems technologically
feasible in a way that was difficult or impossible until recently. We shall use the term
groupware to refer to the kind of software environments needed to support such a team,
whose members collaborate over a network (Zwass, 1998). Groupware systems are intended
to provide a team a shared workspace, despite being separated spatially and temporarily.
Groupware or collaborative systems can be instrumental in alleviating the logistical
difficulties that are associated with the application of distributed expertise. Indeed, the next
generation of development processes is expected to focus on the effective integration of
distributed expertise.

Experimental studies of both experienced programmers and novices have established
the positive impact of collaboration. Wilson, Hoskin, and Nosek (1993) conducted a study to
determine if experience with collaboration could benefit beginning programmers performing
problem-solving/programming tasks. The experimental results provided positive support for
the hypothesis that collaborative efforts could improve the problem-solving required in
programming tasks. The experiment compared a control group of novice programmers,
solving a software problem individually, with another group that allowed partners to
communicate freely. The results demonstrated that even such simple collaboration enhanced
the problem-solving performance of the novice programmer. The study also found evidence
that an individual’s ability had little overall effect on team performance, a phenomenon they
claim occurred because the collaborative effort counterbalances individual deficiencies. The
study also showed evidence that the collaboration provided the programmers confidence in
the solution and enhanced their enjoyment of the problem solving process. Collaborative
interactions appear to help beginning programmers analyze and model problems, and may

(E 1AJESM

Volume-9, Issue-II 2

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2018, Submitted in January 2018, iajesm2014@gmail.com
also help them master the analytical skills required by such tasks (Wilson, Hoskin & Nosek,
1993). Other controlled experimental studies indicate it is worthwhile to integrate
collaborative activities even at the early stages of problem solving and programming training
(Sabin & Sabin, 1994). Experiments with experienced software engineers (Nosek, 1998) also
demonstrate that collaboration improves the problem solving process. Indeed, all team
projects evaluated in the study outperformed comparable individually implemented projects,
while at the same time team members were more personally satisfied with their work and had

greater confidence in their solutions.

The overall objective of this review is to identify ways in which collaboration can
facilitate the software development process. The review will examine collaborative problem
solving and groupware in the software development domain, focusing on four areas: group
problem solving, individual problem solving, groupware, and group psychology/sociology,
including: group and individual problem solving models and tools, groupware systems, group
cognition, and team dynamics. We will highlight the contributions and outstanding issues in
group problem solving and group software development, with the objective of identifying an
area of research that will represent an advance in the state of the art.

A group that develops a plan for designing a system that will solve an existing
problem is by definition engaging in collaborative problem solving. Collaborative groups
appear able to deal with complex tasks more effectively than individuals, partly because
groups automatically have a broader range of skills and abilities than individuals (Finnegan &
O’Mahony, 1996). Despite this, studies indicate that group problem solving is intrinsically
more complex than individual problem solving (XXX Finnegan & O’Mahony, 1996). It can
introduce difficulties that are specifically group-related, such as an interaction environment
that inhibits the free expression of ideas (Hoffman, 1965), participation biases, conflicts
caused by interpersonal difficulties, or complications arising from the structure of the group.
Overall, however, the benefits of collaboration in problem solving far outweigh its
disadvantages (Hohmann, 1997). For example, one notable benefit is the ancillary
improvement of human capital effected by collaboration, because the individuals involved in
a group learn from the skills and abilities of the other group members (Prey, 1996). The need
to articulate designs, critiques, and arguments to other group members also hones an
individual’s technical, critical, and interpersonal skills (Guzdial et.al, 1996).

A collaborative problem solving model is an explicit methodology used to
facilitate collaborative problem solving. A comprehensive such model will include not only
generic problem-solving steps, domain-specific tasks, and requisite cognitive skills, but also
the communication and coordination activities required by a collaborative environment. The
collaborative problem solving method may be similar to an individual problem solving
method. Indeed, in his important work on group software development, Hohmann (1997)
observes that collaborative problem solving can be done using the very same problem solving
methods that are used by individuals. Hohmann claims that while it is important for a group
to explicitly choose and follow a problem solving method, and while group members should
be familiar with the selected method, nonetheless, the method itself does not need to be
designed specifically for group problem solving. Despite this laissez-faire approach to the
chosen problem-solving method, Hohmann observes that the way in which a team will
appropriate such a method in a collaborative environment, will differ substantially different
from the way in which an individual will apply the same method.

A logical/qualitative method for facilitating joint decision making and alleviating
conflict resolution was developed in Wong (1994). The approach is applicable to the kind of
cooperation required of software engineers on a development project. Wong’s model has
three stages: identification, processing, and negotiation. The identification stage entails first
identifying a decision agenda using priority-ordered criteria, then identifying the agents
concerned with each criterion, where the term agent refers to the person or system
responsible for a problem solving step. Competing alternatives are identified and the
relationships among the alternatives are determined. The processing stage develops a set of
so-called preference expressions for each criterion in the decision agenda. These preference

(E 1AJESM

Volume-9, Issue-II 3

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2018, Submitted in January 2018, iajesm2014@gmail.com
expressions are merely ordering relations for pairs of alternatives. The alternatives are then
rank ordered to determine a recommended solution. A final negotiation stage then follows

where the agents negotiate conflicts.

A model of group problem solving formulated by empirically observing group
decision making behavior in environments which lay outside scientific/engineering/software
development contexts was developed by Finnegan and O’Mahony (1996). This behaviorally-
based model empirically recognized the same kind of problem-solving processes that have
been systematically and explicitly articulated for engineering contexts. Groups progressed
from an initial problem realization to a solution choice by a process dominated by
communication of information and group collaboration, and needed significant levels of
coordination and control throughout the decision making process. The initial, problem
realization stage was typically initiated by a specialized group or by organization
management. The next stage, planning, required coordination of subgroups. A subsequent
information search stage was followed by group discussion of the information discovered
about the problem. Subsequently, alternatives were identified and evaluated, and a preferred
alternative selected, followed by validating, marketing or selling of the alternative to other
groups, and ultimately implementation of the selected solution. The process is iterative,
adapting to new requirements as they arise, reminiscent of user-centered software design in
which a design is tested and redesigned through multiple iterations (Kies, Williges & Rosson,
1998).

We will use the models of Simon (1997) and Hohmann (1997) as points of reference.

Simon’s (1960) influence in the field of problem solving has been seminal (Deek, 1997,
Hohmann, 1997). Though Simon considered only collaborative decision making, the
similarities with collaborative problem solving (Huitt, 1992) makes his collaborative decision
making model an important point of reference for the collaborative problem solving models
we have described. Hohmann’s (1997) model, on the other hand, is a useful point of
reference because it is relatively comprehensive and closely related to some of Simon’s most
influential work.
Dubey Mohit and Aarti Garg (2014)3 opine that the IT industry plays vital role among all the
industries in achieving country’s objective of economic development. The IT sector has been
rich over the years and has emerged as a key contributor to the global economic growth. IT
sector is comprised of Software Services, Enabled Services (ITES) and Hardware. The sector
has seen steady rise in growth trajectory throughout past few years. According to
NASSCOM, the sector has shared 7 % of GDP in Indian economy. The prime aim of this
article is to analyze the growth and performance of Information Technology in India. The
study concludes that the IT sector has been revolutionary by creating employment
opportunities with multiple scopes in various domains. Indian IT sector is one of the parts of
global village and it is an instrumental way to transform Indian people in to the social
modernization.

G. V. Vijayasri (2013) observes the relationship of the Indian economy and
Information Technology industry along with Government promotion policies regarding IT
industry. The study shows that the IT Industry has to play major role to the industrial
verticals such as railways, airways, sea- network that have smooth functioning with IT
Industry. The paper also looks back in to the years 1992-2001 where the phenomenal growth
of industry services was marked over 50%.With the support of IT policies IT sector has
provided 2.9 million jobs directly and 8.9 million jobs indirectly to the nation. Yet, IT sector
has some challenges to face like insufficient subsidy, mistargeting and Government scares
resources of the Indian IT industry and the rapid growth of 50,000 graduate engineers are in
the queue of seeking employment in IT Industry in India every year.

Saji T.G. et al.’s (2013) the Global Financial Crisis and Performance of the Indian
Corporate sector: A firm level analysis’ involves the impact of financial crisis on some
selected corporate sectors e.g. Banking, Reality and Infrastructure Sector, Automobile,
FMCG, Pharmaceuticals & Information Technology. The selected four large groups of
companies were Infosys, Wipro, TCS and Tech Mahindra .This study includes financial

(E 1AJESM

Volume-9, Issue-II 4

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2018, Submitted in January 2018, iajesm2014@gmail.com
performances like sales growth, earning growth, profit margin, return on equity, solvency
ratio, earning per share, dividend yield and net worth of return from the period of 2006-07 to
2008-09. Review of Literature - II Economic Analysis of Changing Dimensions of IT Sector
in India. The study was mainly based on pre and post crisis of the six sectors that were
analyzed on the basis of secondary data collection. The results of the study showed that the
growth of banking sector during the period of crisis was up securing all financial
performances whereas, in this study of IT sector, the sales and earning profile were
considerably improved in the study period. Wherein, Automobile companies in India slightly
showed a steep decline in their earnings. FMCG (Fast moving consumer goods) were seemed
to be not much affected by crisis while the pharmaceutical selected companies’ growth
showed negative trends in case of EPS, Dividend yield, return on net worth and came to the
conclusion that the degree of global crisis did not shock the same of the Indian corporate

sector. Some sectors were hit by global crisis and some remained unaffected.

Economic Survey (2012-13) concludes that Indian IT and ITES sector have started
facing many challenges due to the rising growth of other countries in software services for
example Sri Lanka 28 %, Argentina 37%, Philippines 69%, Ukraine59%, Costa Rica 35%
and Russian Federation 27% during the years 2005 to 2011 which was higher than the
world’s top ten exporters. The big issue of outsourcing in USA and UK is that both countries
have just initiated a local workforce. India should take up opportunity through improving a
value chain software services focusing on domestic sector, raising wages in urban BPO,
moving towards rural areas for skill development and English language training with USA,
European and different countries. Das Shyamanuja (2012) in “The High Momentum
Verticals” analyzes the vertical-wise trends of IT industry. Today in India the demand side of
the IT sector (spending) varies in segment to segment of the business. Manufacturing is a
broad sector whereas telecom is focused and well regulated, construction and retail are
dominated by unorganized sectors; education that is dominated by government and so on. His
methodology of the study is to compare 2012 data of IT spending and forecast in 2013 in
percentage growth of IT industry and compare the verticals among Banking, Manufacturing,
Telecom, Construction, Education, Automotive and Retail. He concludes that IT is now
interwoven with business and it is not only finding business solutions but also finding a new
opportunity for business. Review of Literature - Il Economic Analysis of Changing
Dimensions of IT Sector in India.

Kathuria Rajat and Mansi Kedia (2012) trace upon the growth phase of Telecom
industry. The growth of teledensity increased with more than 75% driven by the growth of
mobile telephony. In the case of mobile telecom network, India has become the second
largest in the world after China. The research further points out the fact that, though the
process o f telecom liberalization began in the 1980s, but the real reformation transcends in
1994 with the enactment the National Telecom Policy (NTP).Not only that Government
created its corporatized departmental monopoly like MTNL and VSNL. The rest of
monopoly managed by DoT (Department of Telecommunication) The Telecom Regulatory
Authority was eventually set up in 1997The new telecom act created the TDSAT (Telecom
Dispute Settlement and Appellate Tribunal) it was fast track disputes settlement process .DoT
was also created BSNL in 2000 for provisions for services separately. Even at this point the
country is obvious regarding the absence of strong policy of Electronic System Design and
Manufacturing (ESDM) and critical to develop in the country. It is examined that
combination of IT and telecommunications with their convergence technology has brought
numerous opportunities from different domains. Thus, IT has come up as a sunrise sector for
the country.

Natarajan Ganesh (2012) carries out that the all economies are passing through
difficult times but IT industry has clear opportunity of the three million people by their
reinforce skills and deliver maximum value of the industry. The financial services of JP
Morgan and Barclays companies had bad impact on worlds companies but Indian IT industry
has shown its good prospects in the area of Cloud computing, mobility, enterprises, social

(E 1AJESM

Volume-9, Issue-II 5

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2018, Submitted in January 2018, iajesm2014@gmail.com
media and big data.. Foundation leadership (NASSCOM) Provide strong new initiatives in

the field of IT industry in India.

Reference:

Singpurwalla, N. D., 1991. Determining an Optimal Time Interval for Testing and Debugging
Software. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, APRIL.VOL.
17(NO. 4).

Sommerville, 1., Software Engineering, Fifth Edition, Addison-Wesley Publishers, 1996.
Sonnentag, S., Brodbeck, F., Heinbokel, T., Stolte, W., “Stressor-burnout relationship in
software development teams”, Journal of Occupational and Organizational Psychology,
Volume 67, Pg. 327-344, December 1994,

Sourabh, Pushap C.(2012)* Embracing New Trends, ,,Dataquest , August 2012Vol. XXX,
PP- 40-41.

Stacy, W., Macmillian, J., “Cognitive Bias in Software Engineering”, Communications of the
ACM, Volume 39, Number 6, pp. 57-63, June 1995.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S., Suchman, L., “Beyond the
Chalkboard: Computer Support for Collaboration and Problem Solving in Meetings”,
Communications of the ACM, Volume 30, Number 1, pp. 32 —47, January 1987.

Subbiah, A. and Selva Kumar M. (2008). ,,IT Sector: A Robust Growth®, Facts for You,
March2008 Vol. XXVII, PP.-31-33.

Swigger, K., Brazile, R., Shin, D., “Teaching Computer Science Students How to Work
Together”, CSCL Conference Proceedings, October 1995, Available [Online]: http://www-
cscl95.indiana.edu/cscl95/swigger.html [26 November 2000].

T. J. Biggerstaff, Design recovery for maintenance and reuse, Computer, 22 (7), pp. 36-49,
1989 16. Binkely, D. The Application of Program Slicing to Regression Testing, Technical
Report, Loyola College in Maryland, pp. 1-24, 1998.

Teng, X. & Pham, H., 2006. A new methodology for predicting software reliability in the
random field environments. Reliability, IEEE Transactions on, Volume 55(3), pp. 458-468.
Thomas, J., Chapter 2 of Human Factors and Interactive Computer Systems, Edited by
Yannis Vassiliou, Ablex Publishing Corporation, Norwood, NJ, 1984.

(E 1AJESM

Volume-9, Issue-II 6

mailto:iajesm2014@gmail.com
http://www-cscl95.indiana.edu/cscl95/swigger.html
http://www-cscl95.indiana.edu/cscl95/swigger.html

