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Abstract

machine learning has two phases: training and testing. In the training phase, a set of examples
(i.e., data with their corresponding labels) are available. With a given machine learning
algorithm, the example data are used to train a model (i.e., tune its parameters) so that it can
identify the relationship between input data and the labels. In the testing phase, input data
without labels go through the same methodology as the training phase for preprocessing,
feature extraction, and feature reduction, and a trained model, which was estimated during
training phase, predicts the output (i.e., labels). The main objective during the training phase is
to estimate a model that has maximal predictive performance at the time of testing.
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Introduction
Electroencephalography is a noninvasive method to directly measure neural activity from
electrodes placed on the scalp [1]. Synchronous activity of a large population of neurons
generates an electric field that is strong enough to reach the scalp, which is recorded as the
electroencephalogram (EEG) with a high temporal resolution [2]. Directly recording neural
activity is one of the advantages of EEG compared to other neuroimaging methods, such as
functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy
(FNIRS), which measure biochemical activity as a proxy for neural activity [3, 4]. Moreover,
due to its high temporal resolution, EEG captures a wide range of neural oscillations. These
rhythms have been categorized into five standard bands: delta (0.5-4 Hz), theta (4-8 Hz),
alpha (8-12 Hz), beta (13-30 Hz), and gamma (>30 Hz) [5]. Studies have shown that brain
activity in each frequency band is associated with different cognitive functions [5]. These
advantages make EEG a viable and practical option to investigate important questions in not
only neural engineering and neuroscience but also clinical applications and disease diagnosis.
EEG signals contain a substantial amount of information with respect to spatial, temporal,
and spectral aspects. This makes EEG a suitable method to investigate various aspects of
brain function and cognition. However, the richness of EEG [5] comes at a cost, where data
can be high dimensional and may have a low signalto-noise ratio, which poses a considerable
challenge to process EEG and identify patterns of interest. Machine learning has received
considerable attention in the field to address the inherent challenges of EEG. EEG is usually
contaminated with noise and artifacts, such as eye movement, slow drift, and muscle artifact
[6]. To increase the signal-to-noise ratio, a preprocessing step is commonly included to
minimize artifacts and reduce unwanted noise. This step can include various procedures such
as band-pass filtering [7], artifact subspace reconstruction [8], independent component
analysis, spatial filters, minimizing muscle artifact, and artifact rejection [3]. In
preprocessing, however, one has to be cautious and visualize data to avoid eliminating any
meaningful and informative component of EEG

Applications

An immense amount of research has focused on machine learning in EEG-based systems.
There are numerous applications for EEG-based machine learning. An important application
is to use machine learning to identify and extract biomarkers from EEG for neurological
disorders, such as Alzheimer’s disease [5], Parkinson’s disease [6], epilepsy and epileptic
seizures [4], and dementia [7]. Other applications of machine learning in EEG include brain-
computer interface (BCI) [8], sleep staging [5], drowsiness detection [6], estimation of depth
of anesthesia [4], and microsleep detection and prediction [2]. Despite different applications,
implementation of the machine learning procedure in these EEG systems follows similar steps
as described in this chapter. For the rest of this section, we provide further details for two
applications of machine learning in EEG. These are brain-computer interface (BCI) and
microsleep detection and prediction. References:
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Brain-Computer Interface
A BCI system enables users to interact with their surrounding using brain activity [6]. BCI
systems are of particular importance for people with severe disabilities, where BCI systems
empower them to control their prosthetics and/or environment without using any muscles or
peripheral nerves [5]. These systems commonly use EEG to record electrical activity of the
brain because EEG is lowcost, has high temporal resolution, and has a low associated risk [4,
2]. One class of BCI systems focuses on motor imagery [2]. In this paradigm, a participant
mentally simulates performing a series of movements. The aim of the BCI system is then to
distinguish different types of movements using brain activity. Several studies have
investigated motor imagery BCI and have achieved relatively acceptable performances (e.g.,
[5]). Using a similar concept, other systems have been developed to control robotic arms and
unmanned aerial vehicles [6]. In these systems, a diverse range of feature extraction methods
have been employed, including CSP [7], coefficients of wavelet transform [8], spectral
features [159], convolutional neural networks [6], and autoencoder [1]. Additionally, a range
of classifiers have been used to separate motor imagery tasks, such as LDA [7], SVM [4],
kNN [8], ensemble classifier [6], naive Bayes [6], and deep neural networks [6]. P300 speller
is another paradigm of BCI [4]. In the P300 speller, participants are presented with a table of
characters where the intensity of one row or column is randomly increased. Participants are
instructed to focus on the letter of interest, which randomly gets highlighted. This change in
intensity produces a reaction in brain activity of the participant which happens approximately
300 ms after the letter is highlighted — i.e., P300. Using the P300 pattern, a BCI system can
identify the letter of interest. The P300 speller paradigm has been widely studied in the
literature and has achieved relatively good performances (e.g., [6]). Several classifiers have
been used to identify the letter of interest in a P300- speller paradigm, such as LDA [8], SVM
[9], deep neural networks [5], ensemble classifier [7], and random forest [3]. There are other
BCI paradigms such as steady-state visual evoked potential (SSVEP), auditory, visual, and
hybrid [2]. These paradigms have also been the subject of many studies (e.g., [8]). There are
numerous studies investigating different BCI paradigms, and the number of publications is
increasing. The findings of these studies show a promising future to improve quality of life
for those who suffer from severe neurological and musculoskeletal disorders.
Microsleep Detection and Prediction in Time
The prediction of imminent microsleeps has also been the subject of several studies [8]. In
these studies, selection of the EEG window corresponding to a microsleep state was done in
a manner so that the EEG window preceded its corresponding microsleep state by a certain
amount of time [5]. In terms of performance, microsleep detection and prediction systems
have achieved relatively high AUC-ROC values (e.g., 0.95 [7]). However, the precision of
these systems is relatively low (e.g., 0.36 [8] and 0.42 [1] for microsleep prediction 0.25 s
ahead). One of the challenges associated with microsleep systems is that microsleep data has
an inherently high class imbalance. Additionally, the class-imbalance ratio varies across
individuals. This introduces complexity for training the system and evaluating its
performance.
Conclusion
An immense amount of research has focused on EEG and its applications in medicine,
neuroscience, rehabilitation, and other fields. Integration of the EEG and machine learning
fields has provided a framework to develop accurate EEG-based predictive systems. Such
advances have resulted in EEG-based BCI systems that can substantially improve the quality
of life for those suffering from severe neural and neuromuscular disorders. In this chapter, we
have provided an overview of machine learning algorithms for EEG-based systems. We
divided the process into EEG data acquisition, preprocessing, feature extraction, feature
reduction, classification, and performance evaluation. For each step, a brief summary was
provided and potential challenges were discussed. However, the field of machine learning is
vast, and therefore this chapter makes no attempt to review all of the existing literature.
Instead, we have provided an overview of different steps that can be combined to develop an
EEGbased predictive system. We consider that machine learning will play an increasingly
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important role in EEG-based systems and their applications. In particular, deep neural
networks will become an increasingly popular choice to develop EEG-based systems. These
methods provide a framework to benefit from both model-based and data-driven approaches,
which requires minimal processing for EEG data.

References

1. Tong, S.,Thakor, N.V.: Quantitative EEG analysis methods and clinical applications.
Artech House engineering in medicine & biology series. Artech House (2009)

2. Lopes da Silva, F.: EEG and MEG: Relevance to neuroscience. Neuron 80(5), 1112-1128
(2013). https://doi.org/10.1016/j.neuron.2013.10.017

3. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869
(2008). https://doi.org/10.1038/nature06976

4. Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C., Chute, D.: Functional near infrared
spectroscopy (fNIRS): An emerging neuroimaging technology with important applications
for the study of brain disorders. Clin. Neuropsychol. 21(1), 9-37 (2007). https://doi.org/10.
1080/13854040600910018

5. Buzsaki, G.: Rhythms of the brain. Oxford University Press, New York (2006)

6. Cohen, M.X.: Analyzing neural time series data: Theory and practice. The MIT Press,
Cambridge (2014)

7. Widmann, A., Schroger, E., Maess, B.: Digital filter design for electrophysiological data —
A practical approach. J. Neurosci. Meth. 250, 34-46 (2015).
https://doi.org/10.1016/j.jneumeth. 2014.08.002

8. Mullen, T.R., Kothe, C.A.E., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Jung, T.-P.,
Cauwenberghs, G.: Real-time neuroimaging and cognitive monitoring using wearable dry
EEG. IEEE Trans. Biomed. Eng. 62(11), 2553-2567 (2015). https://doi.org/10.1109/TBME.
2015.2481482

1A BEEM

i

Volume-9, Issue-Il 9


mailto:iajesm2014@gmail.com
https://doi.org/10.1016/j.neuron.2013.10.017
https://doi.org/10.1038/nature06976
https://doi.org/10.%201080/13854040600910018
https://doi.org/10.%201080/13854040600910018
https://doi.org/10.1016/j.jneumeth.%202014.08.002

