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Abstract
This article studies the steady two-dimensional flow of a magnetic fluid over a surface that is
moving and stretching. The fluid is treated as incompressible, electrically conductive, and
follows Newton's laws. The study also looks at how heat and mass are transferred along with
the flow. A uniform magnetic field is applied across the fluid, and this setup helps in
understanding how the magnetic force affects the flow. Using mathematical models and
numerical methods, the equations that describe the movement of the fluid, heat transfer, and
mass movement are simplified through similarity transformations. These equations are turned
into a group of linked nonlinear equations that are easier to solve. To get solutions, the shooting
method is combined with a fourth-order Runge-Kutta technique. The results show how three
main factors affect the speed, temperature, and concentration of the fluid: the strength of the
magnetic field, the Prandtl number, and the Schmidt number. The magnetic field strongly slows
down the fluid because of the Lorentz force. The Prandtl and Schmidt numbers increase the
thickness of the layers where heat and mass are transferred, respectively. This study is useful
for engineers working with electrically conducting fluids because it shows how movement,
heat, and mass transfer are connected in magnetohydrodynamic flows.
Keywords: Magnetohydrodynamic flow; Stretching sheet; Heat transfer; Mass transfer;
Boundary layer; Numerical analysis

Introduction

The magnetohydrodynamic (MHD) flow has become a significant field of study because of the
wider range of application in the field of engineering, applied science, and industrial advanced
technologies. MHD is concerned with the behavior of electrically conducting fluids, including
molten metals, electrolytes, plasmas and ionized gases, under the influence of magnetic fields.
The forces created between the moving fluid and the magnetic field applied by it are
electromagnetic in nature and have a great impact on the movement properties of the flow.
These interactions are essential in numerous applications in practice, such as the extrusion of
polymer, continuous casting of metals, cooling of nuclear reactors, crystal growth during
semiconductor production and electromagnetic flow control systems. The fluid motion,
temperature profiles and concentration of species in such applications must be tightly
controlled to give the product high quality, safe operation as well as efficiency of the process.

Flow over a extending sheet is a classical boundary layer problem that has been given particular
attention to because of the applicability to manufacturing and material processing industries.
Extrusion of plastic sheets, rubber sheets, hot rolling, glass fibers, wire drawing, and metal
spinning are some processes that involve the use of stretching surfaces. The conceptual
innovation of a stretching sheet was made to simulate the boundary layer behaviour caused by
steady extension of a surface which greatly changes the structure of the fluid flow relative to
the cases of stationary or uniformly moving plates. The analysis can be more realistic when the
effects of heat and mass transfer are included in the problem because in the vast majority of
industrial processes, momentum, thermal energy, and chemical species interact with each other
simultaneously. The interplay of these transport mechanisms results in complicated nonlinear
and coupled mathematical models, which require powerful analytical/numerical techniques to
find solutions.

Adding a magnetic field adds another degree of complication to the flow dynamics. MHD
streams Changing the velocity field is possible because the application of a magnetic field
produces a Lorentz force that acts counter to the direction of fluid motion. The magnetic
damping effect has a large and forceful impact on the hydrodynamic, thermal, and
concentration boundary layer thicknesses. Therefore, the magnetic field can be a helpful tool
for controlling flow behavior, heat transfer rate, or even instability in electrically conductive
fluids. Typical methods of controlling flow may not be practical or sufficient in high-speed,
high-temperature industrial processes due to the interaction of magnetic forces in timing with
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mass and heat transfer processes.
Over the past few decades, numerous researchers have examined multi-scale hydrodynamic
(MHD) boundary layer flow over stretching sheets, taking into account various physical
processes such as heat radiation, chemical reactions, suction and injection, porous media, non-
Newtonian fluid behavior, etc. These studies have significantly advanced our understanding of
the phenomena of individual and group travel in a variety of operational contexts. Nevertheless,
the combined effects of magnetic fields, heat conduction, and mass dispersion over a long
surface remain an active area of study, even with these advancements. Even when taking into
account practical boundary conditions and industry-relevant parameters, the nonlinearity of the
governing equations and the strong coupling between them and momentum, energy, and species
transport continue to be a computational and mathematical hurdle.
This study will create a strong mathematical model for the steady two-dimensional MHD
boundary layer flow over a stretching sheet, including the effects of heat and mass transfer, as
discussed earlier. The basic equations are developed from fundamental laws of conservation
and then converted into a dimensionless form using suitable similarity variables. After that,
numerical techniques are used to solve the nonlinear system of equations. The research will
then look at how different important parameters affect the velocity, temperature, and
concentration distributions. We believe this work will help understand the physical behavior of
MHD transport and offer helpful ideas for improving the design and optimization of
engineering systems that use electrically conducting fluids.
Mathematical Formulation
The study looks at a two-dimensional, smooth, steady flow of a fluid that can conduct
electricity and doesn't change density. The fluid flows over a surface that is stretching. The
surface is at y=0, and it stretches along the x-axis. The direction going up from the surface is
the y-direction. The fluid is present in the area where y is greater than zero. The speed of the
stretching surface is given by Uw(X) = ax, where 'a' is a positive number that shows how fast
the surface is stretching, and the stretching happens in the x-direction. Many industrial
processes, like metal shaping and making plastic, use such a type of flow.
A steady magnetic field B0 is applied perpendicular to the stretching surface.
Since the fluid can carry electricity, applying this magnetic field creates a force called the
Lorentz force. This force acts in a direction that’s at right angles to the fluid's movement. The
magnetic field slows down the fluid flow and changes how momentum moves in the boundary
layer. The study assumes that many real-world and lab-scale MHD flows have low Reynolds
numbers. Because of this, the effect of the magnetic field created by the moving fluid is
ignored, using a low magnetic Reynolds number assumption.
It is also assumed that the fluid's density stays the same, the flow is smooth, and the fluid's
properties like viscosity, how well it conducts heat, and how it spreads mass are constant.
To simplify things, the study ignores effects like heat from friction and heating from electric
currents, and only considers the magnetic force acting on the fluid. Using the idea of boundary
layer theory, the study uses equations that describe the conservation of mass, movement, heat,
and concentration of substances. These equations help understand how mass, heat, and
movement are connected in a magnetic field, and they are used in a step-by-step way to solve
numerical problems based on similarity.
Assumptions
e The flow is steady and laminar
e The fluid is incompressible and Newtonian
e Induced magnetic field is negligible (low magnetic Reynolds number)
Viscous dissipation is neglected
Heat and mass transfer occur simultaneously
Governing Equations
Assuming the flow is steady, two-dimensional, incompressible, and laminar, and it involves
magnetohydrodynamic effects over a stretching sheet, the basic laws that govern mass,
momentum, energy, and concentration of species are developed by analyzing how the fluid
behaves in the boundary layer. Since the velocity in different directions is connected, the

¥ 1AJESM
=4

Volume-9, Issue-Il 60


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2018, Submitted in March 2018, iajesm2014@gmail.com
continuity equation takes care of mass conservation. A magnetic field that acts perpendicular
to the flow is used to control the movement of an electrically conducting fluid. The momentum
equation explains how different forces—Ilike inertia, viscosity, and the electromagnetic Lorentz
force—balance each other out. As a result of fluid motion and conductive heat diffusion over
the boundary layer, the equation for energy balance governs the flow's thermal energy transfer,
which includes convective heat transfer. Also, it's important to remember that the species
concentration equation regulates mass transfer by adding convective transport and molecule-
based diffusion of chemical species. Beginning with these two linked boundary layer nonlinear
equations, we can analytically characterize the flow regime, heat transfer, and mass diffusion
of the MHD fluid over the stretched sheet. From here, we can proceed with similarity
transformations and numerical analyses.

Continuity equation

There is no net change in mass as a result of the fluid's motion, according to the continuity
equation, which is also known as the law of conservation of mass. The net rate of mass flow
into any fluid element should be equal to the flow out of mass; this is defined by the dependence
between the components of velocity in the streamwise (x) and transverse (y) directions when
the continuity equation is applied to the steady, two-dimensional, incompressible flow. Thus,
the density of the fluid would be maintained constant across the flow field, as any change in
velocity in one direction would be balanced out by a corresponding change in velocity in the
other direction.

du dv 0
dx + dy
In the equations associated with the flow of the boundary layer on a stretching sheet, the
continuity equation is an essential step in interrelating the velocity components and allows the
introduction of a stream function which, by implication, allows the conservation of the mass to
be taken into account, and the mathematical formulation of the problem to be simplified.
Momentum equation
The momentum equation governs the change in velocity due to the combined effects of inertial
force, viscous force, and electromagnetic force, and it describes the law of preservation of the
linear momentum of the fluid flow in the boundary layer. The momentum velocities
perpendicular and parallel to the stretching sheet caused by its motion in the flow field of
acceleration are represented by the convective terms in this equation.
du du *u oBj
uﬂx-l_vﬂy vﬂyz pu

The concept of viscous diffusion takes into account the flow resistance caused by the fluid's
viscosity, which acts to level velocity gradients and is most prominent at the boundary layer.
An additional electromagnetic force acting on the body, known as the Lorentz force, is
produced when an externally applied transverse magnetic field interacts with the induced
electric current. The flow's velocity drops and the momentum barrier layer thickens because
this force acts counter to the direction of fluid motion. A huge component of studying the
behavior of magnetohydrodynamic flows across a stretching sheet is the momentum equation,
which is the equilibrium of inertia, viscosity, and magnetic damping.
Energy equation
The temperature distribution in the boundary layer of a stretched material sheet is determined
by the conservation of thermal energy in fluid flow, which is also known as the equation of
energy. The effects of advection on the thermal field are represented by the terms in the
equation that describe convection; these terms explain that heat is conveyed by the motion of
the fluid both perpendicular to and parallel to the sheet.

ar  aT 3°*T
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The thermal diffusivity of the material determines the conductive term, which is the heat
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diffusion due to changes in fluid temperature. It is crucial to include this term when determining
the thermal boundary layer thickness. Any slowing of fluid motion by magnetic damping
changes the convective heat transfer mechanism, hence any modification to the energy equation
in magnetohydrodynamic flow is an indirect result of the field's effect on the velocity field.
When studying MHD flows over stretching surfaces, the energy equation is crucial for
determining the temperature distribution since the balance between convective and conductive
heat transfer mechanisms determines the overall flow.

Species concentration equation

The equation for species concentration, which is a type of mass conservation equation, shows
how the mass of a chemical substance is kept steady in the fluid flow. It also helps to explain
how the concentration of the substance spreads in the layer near the surface of the stretching
sheet. The parts of the equation that describe movement, called convective terms, show how
the substance moves with the fluid flow both along the direction of the flow and across the
surface, meaning how the moving fluid carries the substance both parallel and perpendicular
to the surface.

ac  dc _d°C

Y ox * ”ay_ Dﬂyz
The mass diffusivity of the fluid characterizes the concentration gradient, which is expected to
spread the species in the higher concentration regions to the lower concentration regions
through molecular diffusion, as represented by the diffusive term. When the fluid's velocity
drops, the rate of convective mass transfer varies, which means that the concentration field and
the magnetic field are interacting with each other in magnetohydrodynamic processes. The
concentration boundary layer depth and most mass transport characteristics are defined by the
ratio of convection to diffusion. Diffusion process analysis in MHD flow systems involving
transport of chemical species, such as in drying processes, pollution dispersion, and catalytic
reactions, relies heavily on the species concentration equation.
Similarity Transformation
The similarity transformation is used to turn the main partial differential equations into a set of
linked nonlinear ordinary differential equations, making it simpler to solve using numerical
methods. By defining appropriate similarity variables, the flow variables depend on fewer
spatial coordinates, effectively changing the two-dimensional boundary layer problem into a
one-dimensional form.

n= \/gy.t/) = Vavxf(n)

where 1is the stream function defined by:

oy ay
u = a__].? = a
The dimensionless temperature and concentration are defined as:
T—-T, C—C.
B(n) = ﬁ,fﬁ(?ﬂ . —c.

Substitution leads to the following nonlinear ODEs

The system of nonlinear partial equations is turned into a set of linked nonlinear ordinary
equations by using similarity variables and dimensionless functions in the boundary layer
equations for momentum, energy, and species concentration. These equations describe the
dimensionless fields of velocity, temperature, and concentration within the boundary layer and
are given by the following values.

The transformed momentum equation governing the flow field is

) + Ff" ) — [F' () — Mf'(m) =0,

in which the dimensionless stream function f(n) and the magnetic parameter Mis, which
represents the applied magnetic field strength, are defined.
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The energy equation governing heat transfer is expressed as

8" (m)+Prf(n)6'(n) =0,

Here, 6(n) represents the dimensionless temperature, and Pr is the Prandtl number, which shows
how much more important momentum diffusion is compared to heat diffusion.
The species concentration equation governing mass transfer is given by

" (m) +Scfm) ¢'(n) =0,
In this case, ¢(n) represents the concentration in a non-dimensional form, and Sc is the Schmidt
number, which shows the ratio of mass diffusivity to momentum diffusivity. These nonlinear
ordinary differential equations, together with their related boundary conditions, form a
complete mathematical model that governs the coupled magnetohydrodynamic flow, heat
transfer, and mass diffusion over the stretching sheet.The system is highly nonlinear, so
numerical methods are needed to find accurate solutions.
Boundary Conditions
The present problem of magnetohydrodynamic flow is developed by defining the boundary
conditions with the physical behavior of the fluid at the surface of the stretching sheet and in
the free stream region that is distant away on the sheet. No-slip condition is applied at the top
of the stretching sheet (n=0) and this demands that the velocity of the fluid at the top of the
sheet match the extension speed of the sheet. This is the condition that makes sure that the fluid
does not move in a relative manner. Also, since the condition of impermeable sheet is that there
is no normal velocity at the sheet, then there is no normal velocity at the surface. Both
temperature and concentration are set as constant at the surface with given surface temperature
and species concentration that are more than in the ambient. Such conditions would be practical
in a situation in which the surface under expansion is kept at constant levels of both thermal
and concentration throughout the manufacturing process.
All surface motion has less of an impact on the sheet as its tension increases (1 0), and the sheet
starts to behave more like an inert fluid. Based on this, the free stream condition is satisfied
because the fluid's velocity is expected to be zero. Similarly, as you move farther from the
surface, the fluid's temperature and concentration asymptotically approach its ambient values.
The temperature and concentration perturbations induced by the stretched sheet do not go
beyond the boundary layer area, thanks to these far-field boundary conditions. When the
surface and far-field boundary conditions are combined, it provides a physically consistent
foundation for solving the transformed governing equations and an accurate and precise
description of the boundary layer's velocity, temperature, and concentration field dynamics.
At the sheet (n = 0):

£(0) = 0,£'(0) = 1,6(0) = 1,(0) = 1
Asn — o
f'(0) =+ 0,6(c0) = 0,¢(c0) = 0

Numerical Solution Method

Boundary value problem The nonlinear ordinary differential equations transformed into with
boundary conditions form a transformed non linear ordinary differential equation. The problem
is transformed into a similar initial value problem by the method of shooting. Unspecified
initial conditions, including f 2 (0), 0 -1 (0), 0 -3 (0), and 0 -4 (0), are estimated through an
iterative process. The fourth-order RungeKutta method is used to solve the resulting system
which is very accurate and stable numerically. When the far-field boundary conditions are met
within a specific tolerance a convergence occurs.

6. Results and Discussion

To study how important factors influence the magnetohydrodynamic flow, heat transfer, and
mass transfer over a stretching sheet, hydraulic simulations were carried out. To examine how
the magnetic parameter M, Prandtl number, and Schmidt number together affect the velocity,
temperature, and concentration profiles in the boundary layer, the transformed nonlinear
ordinary differential equations were solved for many different values of these parameters. To
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better understand their real-world importance and how they affect the flow, some parameters
were changed one at a time while keeping the others the same.
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Figure 1: Velocity Profile for Different Magnetic Parameters

The velocity profile shows that an increase in the strength of the magnetic field has a significant
effect on decreasing the fluid velocity throughout the boundary layer. The interaction between
the supplied magnetic field and the electrically conducting fluid produces the Lorentz force,
which is responsible for this phenomenon. By serving as a resistance to the flow direction, the
Lorentz force both slows the flow and speeds up momentum diffusion across the stretching
surface. This is particularly useful in practice for situations requiring flow stability and control,
as it causes the momentumary boundary layer thickness to increase, which in turn increases the
fluid's resistance.

The Prandtl number affects how heat moves through a fluid. As seen in the temperature field,
when the Prandtl number is higher, the thermal boundary layer becomes thinner. This happens
because the Prandtl number shows the relationship between how fast momentum spreads and
how fast heat spreads. A higher Prandtl number means heat spreads more slowly compared to
momentum. As a result, temperature changes near the surface become steeper, the thermal
boundary layer gets narrower, and heat moves more slowly. Liquids like oils and polymer melts
behave this way, showing how the properties of a fluid greatly influence how heat is transferred.
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Figure 2: Temperature Profile for Different Prandtl Numbers (Pr)

Similarly, the concentration distribution in the boundary layer can be determined with the help
of the Schmidt number Sc. The mass diffusivity of the species is reduced as the concentration
of Scleads increases, as the concentration boundary layer thickens to a great extent. Since a
lower molecular diffusion velocity is associated with higher Schmidt numbers, concentration
gradients are steeper as one approaches the surface. A precise estimate of the rate of mass
transfer is crucial in processes such as chemical reactions, drying, and the transportation of
contaminants, where this has been determined to be of considerable importance.

In sum, the numerical results indicate that the interchange of momentum, heat, and mass in
magnetohydrodynamic fluxes over stretched surfaces is fundamentally connected. By way of
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governing equations, changes to one transport mechanism have direct nonlinear impacts on the
other transport mechanisms. To accurately describe the complex behavior of MHD flow
systems, these results show that multi-physical modeling is necessary. The industrial
optimization of processes involving electrically conducting fluids and the improvement of
thermal and mass transport control can both benefit from the findings of this study.
7. Conclusion
To study the two-dimensional flow of a magnetohydrodynamic fluid over a smooth, expanding
surface while also considering heat and mass transfer, this article presents a detailed
mathematical model. The complex nonlinear partial differential equations that describe the
system were simplified into a set of connected nonlinear ordinary differential equations using
similarity transformations. These equations were then solved numerically using the Runge-
Kutta shooting method. The study looked at how key factors influence the flow, temperature,
and concentration profiles. The findings show that as the magnetic parameter increases, the
thickness of the momentum boundary layer also increases, which causes a noticeable decrease
in fluid velocity because of the Lorentz force. Higher Prandtl numbers reduce the ability of
heat to spread, which makes the thermal boundary layer thinner. Similarly, higher Schmidt
numbers reduce mass diffusion, making the concentration boundary layer thinner. The research
highlights how momentum, heat, and mass transfer are connected in MHD flows over
stretching surfaces. These results have important applications in fields like temperature control
systems, polymer processing, and metalworking. Future work could include factors like heat
radiation, chemical reactions, energy loss from viscosity, or behavior of non-Newtonian fluids
in the current model
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