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Abstract: It Optimization theory is a standout amongst the hugest and captivating branches of
connected mathematics. It is formally worried about the procedure of maximization or
minimization of a coveted capacity while fulfilling the overall constraints. This has caught
practically whole domain of human advance. Truth be told, nature has a galore of circumstances
where optimum system status are produced. In metals and alloys, the atoms take places of
minimum vitality to form unit cells. These unit cells characterize crystalline structure of
materials. Genetic mutation for survival is another case of nature's optimization procedure. Like
nature, human organizations have additionally worked hard towards discovering perfection.
Arrangements of their problems have been looked for the most part on the premise of
involvement and judgment. Be that as it may, in the world of today, the expanded rivalry and
buyer demands regularly require optimum arrangements instead of simply doable arrangements.
It has been encountered that optimization of design process spares cash for a organization by
essentially decreasing the improvement time. In this manner the theory of optimization manages
picking the best option among a few choices in the feeling of given capacity with minimum
conceivable assets. This creates a class of problems named as mathematical programming
problems. The optimum looking for techniques are known as mathematical programming
techniques and by and large concentrated as a piece of operations research.
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1.1 Introduction

In this study, Optimization theory is a standout amongst the hugest and captivating branches
of connected mathematics. It is formally worried about the procedure of maximization or
minimization of a coveted capacity while fulfilling the overall constraints. This has caught
practically whole domain of human advance. Truth be told, nature has a galore of circumstances
where optimum system status are produced. In metals and alloys, the atoms take places of
minimum vitality to form unit cells. These unit cells characterize crystalline structure of
materials. Genetic mutation for survival is another case of nature's optimization procedure.
Like nature, human organizations have additionally worked hard towards discovering
perfection. Arrangements of their problems have been looked for the most part on the premise
of involvement and judgment. Be that as it may, in the world of today, the expanded rivalry
and buyer demands regularly require optimum arrangements instead of simply doable
arrangements.

Mathematical programming possessed a status of logical field in its own particular right amid
late 1940's and from that point forward it has experienced gigantic advancement. It is presently
considered as a standout amongst the most energetic and energizing branches of modem
mathematics having broad applications in different settings, for example, designing, financial
matters and common sciences. An exceptionally regular case of a mathematical programming
problem shows up in discovering minimum weight design of structure subject to constraints on
stress and deflection.

The form of a mathematical programming problem is as follows,

(MP): Optimize (minimize/maximize)f(x).

Subject to

0i(x)<0,i=1,2,3,...,m,

hj(x)=0,=1,2,3,.....k,

xeX
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Here the function f and each fj and hj are genuine esteemed capacities characterized on n
dimensional Euclidean space R" and X cR". This is alluded to as the general mathematical
programming problem. The constraints, gi(x) <0,1=1, 2..., m are alluded to as to as inequality
constraints, the constraints hj(x) = 0, j = 1, 2... k are called fairness constraints. The
incorporation x € X is known as a conceptual constraints. On the off chance that the goal and
imperative capacities are differentiable then we portray the above problem as differentiable
program. On the off chance that the goal and the inequality constraints are relative capacity and
X is a convex set, at that point the above problem is known as a convex programming problem.
1.2 PRELIMINARIES
1.2.1 Notations

" = n-dimensional Euclidean space,
R" = The non-negative orthant in R",
MT = Transpose of the matrix M,
Let 0 be a numerical function defined on an open set { in R", then
V 0 ( X) denotes the gradient of 0 at X , that is
VB(x)=

A
! o

Let y a real valued twice continuously differentiate function defined on an open set contained
in R"xX R™. Then Vxy (x, y) and Vyy f( X, y) denote the gradient (column) vector of f with to x
and y respectively,

V¥(%,7) = [5"’ N ]T

't ax" J

p T
V. W(%§)= ,@_ﬁﬁ]
pHET] [611 X" )y

Further V2«( Xy ) and V% y(x,y) denote respectively the (n x n) and (n x m) matrices of
second order partial derivative i.e

e [ 8%y )

Vi wx.y)= : J
x|

f 5;w ;
Vi¥(x,y)= ] .
wy { - } ml,w'__“‘.}

The symbols and V2 y (Xy )are characterized correspondingly. Be that as it may, at certain
places, to make the importance of the setting all the more clear, the subscripts ofVand V? are
brought as the variable as for which the function is being separated.
1.2.2 Definitions
Definition 1.1 Let X =c R" be an open and convex set and f: X — R be differentiable. Then
we define f to be.
1. Convey, if for all x1, X2 € X,

f(x1) - f(x2 ) > (x1 — X2 )T VF(X2).
2. Strictly convex, if for all x1, x2 e X and x1 # x2

f(x 1)-f(x2 )> (x1-x2 ) 'VF(X2).
3. Quasiconvex, if for all x1 ,x2 € X,

f(x1) < f(x2) => (X1- X2 )TV f(X2) <0.
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4. Pseudoconvex, if for all x1 ,x2 € X,
(X1 — X2 )TVF(x2 ) > 0 => f(x1) > f(x2).
5. Strictly Pseudoconvex, if for all X1, X2 € X X1 #x2
(X1 -X2)V(X2)>0=—1f(x1)>1(x2).
6. Invex, if there exists a vector function 1 : R" X R" -R"
Such that for all x1.x2 € X, f(X1) — f(X2) > 1 (x1.X2)" Vf(X2).
7. Pseudoinvex, if there exist a vector functionn : R "X R" —»R"
such that for allxixz € X,(X1,%2) 'V f(x2) > 0= f(x1) > f(x2)
8. Quasiinvex, if there exist a vector functionn : R"X R "—R"
such that for all x1 x2 € X, f(x1) < f(x2) =— 1 (x1,X2) "V f(X2) < 0.

9.Second order convex (Bonvex), if for al x1,x2 € R". f(X1) - (X2) > (x1- X2) V2 f(x2)p % (A
21(x* )p).

10. Second order pseudoconvex (Pseudobonbex), if for all x;,x2e X, peR "

(X1 —X2)TV2 f(x2) + (X1 —X2) TV2f (x®)p > 0 =— f(x1) f(X2) - (p T V2 f(x2)p).

Unmistakably, a differentiable convex, pseudoconvex, quasiconvex function is invex,
pseudoinvex or quasiinvex separately with n (x1, X2) = (X1 — X2 ). Promote we characterize f to
be concave. Strictly concave, quasconcave, pseudoconcave, strictly pseudocovex, on X
according as - f is convex, strictly convex, quasi convex, pseudo convex, strictly pseudo
convex.

Definition 1.2; Let f : R" — R be a convex function, then a sub-gradient of f at point X € R" is
a vector ¢ € R" satisfying.

fly) 2 fix) +E'(y-x), Vy e R"
Definition 1.3: The set of all sub gradients of f at x € R" is called sub-differential of f at X is
denoted by 0 f(x).
Definition 1.4: Let I'be a nonempty of R".
Q) The set I' is called a cone if
XxXe, ' A>0=>Axe.ll
(i)  Aconel’ © R"isconvex if
X+ye,I'forallx,ye.T
(ili)  LetT =c R" be a convex cone. Then T" * defined as
I'*={zeR":2" X <0, for all x € I' is called the polar cone of T".
Definition 1.5: Let X € R"and Y € R™ be convex subsets and g: X x Y—R. Then the function
g is said to be convex - concave on X x Y if it is convex in ‘x’ for each fixedy € Y and concave
iny for each fixed x € X
There are number of constraint qualifications, which are required to be fulfilled by the
constraints, while building up the fundamental optimality criteria to guarantee that specific
Lagrange multipliers exist and are non-zero. Here we portray just four of them for fulfillment
of ideas.
(i)Slater's Constraint Qualification: Let X° is a convex set in R". The m-dimensional convex
vector function g on X° which characterizes the convex achievable region
X ={x:xeX "g(x) <0} is said to fulfill Slater's constraint qualification on X? if there exists
a x € X with the end goal that g(x) <O.
(ii) The Kuhn-Tucker's Constraint Qualification: Let X° be an open setin R", Let g be am-
dimensional vector function defined on X°and let X = {X: X € x5 g(x) < 0}. At that point the
constraints are said to fulfill the Kuhn-Tucker's Constraint. Qualification at x € X if g is
differentiable at x and if
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R
- There exists an n-dimensional vector function e defined in
the interval [0,1] such that
= (a) e(0)=x
(b) e(t)e XforOsts1.
Vg,(ﬂ)yso/ \(c) e is differentiable at =0 and qu(§_)_)= Ay forsome A >0.

where I = {i: g(¥)=0}.
(iii) The reverse convex constraint qualification: Let X "be an open set in R ", let g be m-
dimensional vector function defined on Xo, and let X = {x| x € X°, g(x) <0 }, g is said to fulfill
the reverse convex constraint qualification at xe X, if g is differentiable atx, and if for each is
i € | either g, is concave at xor gi is linear on R", where | = {i | gi ( x) = 0}.

Linear independence constraint qualification: The condition that the vectors V gi (Xo)........ V
gm(Xo) is linearly independent is often alluded to as linear independence constraint
qualification.

REVIEW OF RELATED WORK

1.3.1 Duality in Differentiable Mathematical Programming

Letf: R" > Rand hj : R" — R, (j = 1,2,...m)then consider the nonlinear programming issue:
(P): Min f(x)

subject to,

hj(x)<0,G=12,...m).

For A € R™ the Lagrangian dual for issue (P) is defined as

(LD): Max(Min(f(x) +2"n(x))

That is,
(LD): M inf(u) + A Th(u)
Subject to,

f(u) + A"h(u)=Min f(x)+A"h(x), A &R

In the event that all the function fand hj : (j = 1,2,. ..,m) are the differentiable convex functions,
at that point the issue (LD) is comparable to the following issue:

(WD): M ax f(x) + A Th (X)

Subject to

V (f(x) + A Th(x))=0,A,>0,LeR ™

This is nothing yet the Wolfe sort dual for the issue (P). Mangasaria explained by implies of a
case that certain duality theorems may not be legitimate if the goal or the constraint function is
a summed up convex function. This spurred Mond and Weir to introduce an alternate dual for
(P) as

(MWD): Maxf(x)
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Subject to

V(f(x) + L'h(x)) = 0,

ATh(x) >0,

A>0,AeR™,

Also, they demonstrated different duality hypotheses under pseudoconvexity off and
quasiconvexity A'h of for all doable arrangement of (P) and (M-WD). Later Weir and Mond
inferred adequacy of Fritz John optimality criteria under pseudoconvexity of the goal and
quasiconvexity or semi-strict convexity of constraint functions. They planned the
accompanying double utilizing the Fritz John optimality conditions rather of the Karush-Kuhn
- Tucker optimality conditions and demonstrated different duality hypotheses in this way the
necessity of constraint qualification is wiped out.

(F,D): Maximize f(x)

subject to

MVE(x) + VATh(x) =0

ATh(x) >0

(Mo,h) =0, (rM)#0.

1.5 Conclusions

The results, obtained in this thesis are presented in chapters 2-7, are briefly summarized as
follows:

First section part is separated in to two segments. In Section 2.1 we consider the following non
differentiable nonlinear problem with help functions:

(NP) : Minimize f (x) +s (x| C)

Subject to

gix)+s(x|Dj)<0,j=1,2...m.

where

(i) for the n-dimensional Euclidean space R", f; R"—» Rand g1 ,- R"”R, (j=1, 2,..., m), are
continuously differentiable, and

@i)s (.|C)and s (.| D)), j =1, 2,..., m) are respectively the support functions of

convex compact sets C and Dj, (j =1, 2, ..., m) in R™.

For this problem, we present the following mixed type dual (Mix D) to (N P):
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