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Abstract
The continuous laminar natural convection boundary-layer flow of an incompressible Powell-
Eyring non-Newtonian fluid past a vertical flat plate is analysed mathematically. The boundary-
layer and Boussinesq approximations are used to develop the governing nonlinear partial
differential equations, which are made up of the continuity, momentum, and energy equations
coupled by a nonlinear constitutive relation for the shear stress. The Powell-Eyring stress—
strain model introduces significant nonlinearity, making standard similarity techniques
inapplicable.
The invariance qualities of the governing equations are systematically determined by using a
one-parameter Lie scaling group. Enforcing form invariance yields the permissible scaling
exponents, which in turn leads to the creation of suitable similarity variables. Consequently, a
coupled system of nonlinear ordinary differential equations formulated on a semi-infinite
domain replaces the initial system of partial differential equations. Boundary conditions in the
distant field and at the wall that are physically significant are added to the reduced system.
In order to ensure convergence to the asymptotic boundary conditions, the resulting boundary-
value problem is numerically solved using a shooting approach in combination with a fourth-
order Runge-Kutta scheme. Parametric modifications of the Prandtl number and the non-
Newtonian fluid parameter are used to analyse the mathematical structure of the solutions. The
paper offers benchmark numerical solutions for the resulting nonlinear ordinary differential
equations and shows how well Lie group methods work to derive similarity reductions for
complicated non-Newtonian convection situations.
Keywords: Powell-Eyring fluid, Natural convection, Lie group analysis, Similarity solution,
Boundary layer, non-Newtonian fluids

1. Introduction

Because of its inherent nonlinearity and numerous applications in fluid mechanics and heat
transfer, the mathematical modelling of boundary-layer flows related to natural convection is
a vibrant field of study. The governing equations become highly nonlinear and frequently defy
traditional analytical solution methods when the working fluid exhibits non-Newtonian
behaviour. Mathematically speaking, the admissible similarity transformations and the
structure of the momentum equations are both considerably changed by the existence of
nonlinear constitutive relations.

The shear stress tensor and the rate of strain have a nonlinear connection in non-Newtonian
fluids. The Powell-Eyring model stands out among the other rheological models put forth in
the literature since it is based on kinetic theory rather than empirical hypotheses. This concept
creates a very nonlinear differential operator in the momentum equation by adding a nonlinear
inverse hyperbolic sine function to the stress-strain connection. As a result, the resulting
boundary-layer equations constitute a linked system of nonlinear partial differential equations
that cannot be solved analytically with traditional similarity methods designed for power-law
or Newtonian fluids.

By taking advantage of underlying invariance qualities, similarity solutions are among the most
effective mathematical strategies for minimising boundary-layer equations. Heuristic scaling
arguments or dimensional analysis are the foundation of classical similarity methods, however
they frequently fall short when used on nonlinear systems with intricate constitutive laws. On
the other hand, Lie group theory offers a methodical and exacting framework for locating
continuous differential equation symmetries. By identifying invariants of the admitted
transformation groups, the approach converts systems of partial differential equations into
ordinary differential equations, allowing for a reduction in the number of independent
variables.
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For Newtonian fluids and, to a lesser degree, some classes of non-Newtonian fluids, the use of
Lie symmetry analysis to boundary-layer equations has been thoroughly investigated.
However, because of their mathematical complexity, similarity reductions for viscoinelastic
fluids controlled by nonlinear stress-strain relations are still rather rare in the literature.
Additional analytical challenges arise, particularly, in natural convection flows employing
Powell-Eyring fluids because buoyancy coupling adds nonlinear temperature-dependent source

factors to the momentum equation.

Finding acceptable scaling transformations that maintain the form of the governing equations
and related boundary conditions is the main mathematical issue. The scaling exponents are
subject to algebraic limitations due to the invariance requirements, and the proper similarity
variables are obtained by solving these constraints. These variables result in a coupled system
of nonlinear ordinary differential equations formulated on a semi-infinite domain by collapsing
the temperature and velocity fields' spatial dependence into a single similarity coordinate.
Ordinary differential equations are simplified to a nonlinear boundary-value problem with
mixed boundary conditions at infinity and the wall. Strong numerical methods are required
since closed-form solutions are not possible due to the presence of inverse hyperbolic functions
and nonlinear coupling effects. Mathematically speaking, these solutions are benchmark results
for examining qualitative characteristics including monotonicity, asymptotic behaviour, and
parameter sensitivity, as well as for verifying approximation analytical techniques.

The current study aims to derive accurate similarity transformations in a systematic way by
applying a one-parameter Lie scaling group to the boundary-layer equations regulating the
natural convection flow of a Powell-Eyring fluid past a vertical plate. After numerically
solving the reduced similarity equations, the impact of important dimensionless parameters on
the solution structure is investigated. The analysis provides mathematically consistent
similarity reductions and numerical solutions that could be helpful in future theoretical
investigations of nonlinear convection problems, in addition to demonstrating the efficacy of
group-theoretic methods in handling complex non-Newtonian models.

2. Mathematical Formulation

2.1 Governing Equations

Examine the laminar, two-dimensional, steady natural convection flow of an incompressible
Powell-Eyring fluid across a flat, vertical plate. The governing equations under the Boussinesq
and boundary-layer approximations are:

Continuity
du 4 d V_O 1
ax ay = M
Momentum
du Odu 107y,
—ty—=- T~ T, )------ J
uaX+ Vay >y +gB(T-T,,) 02)
Energy
6T+ aT  0°T -
uz= Vay—aayz (1)
where u,vare velocity components, 7is temperature, and other symbols have their usual
meanings.

2.2 Powell-Eyring Constitutive Relation
The Powell-Eyring stress—strain relationship is given by [1,7]:
— a_u + l inh! (la_u) 1
er—,uay ﬂsm cay. (iv)
For boundary-layer flows, this leads to nonlinear momentum diffusion.
3. Non-Dimensionalization
Introduce the dimensionless variables:
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The governing equations reduce to:
du N 0 V_O
ox oy 4

ou au_a u ) 1(611)/ .
u6X+V6y_6y ay+ﬂsmh T + Gr 6----(vi)
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“ox Vay_ Proy? (vid)
Dimensionless Parameters
The non-dimensional parameters appearing in the above equations are defined as:
e Grashof number

gﬂ( TW' Too)L3
Gr="m

12
¢ Prandtl number
v
Pr=—
a
e Powell-Eyring fluid parameter
1
A=—
upc

where gis gravitational acceleration, fis the coefficient of thermal expansion, vis kinematic
viscosity, ais thermal diffusivity, and g 6, care material constants associated with the Powell—
Eyring fluid model.
4. Similarity Transformation Using Lie Scaling
Introduce the stream function ¢

ay oy
0 y'V: 0x
Using a One-Parameter Scaling Group, the dimensionless governing equations admit
invariance under a one-parameter scaling transformation of the form [2,8]:

x=exy =ty =ecyd=0

= ue - (viil)

where &is the group parameter and a,b,care real constants to be determined such that the
governing equations remain form-invariant.

Stream Function Representation

Introduce the stream function ¢/(x,y)defined by:

0y ay
=3 y'V: ox
which automatically satisfies the continuity equation:
du N v _
ox oy
Scaling of Velocity Components
Under the scaling transformation:
Y=y

the velocity components transform as:

u Al =efeh)y

oy
v =- 61,0* =ef(cDy
0x
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Invariance of Momentum and Energy Equations
For the momentum and energy equations to remain invariant under scaling, all terms must
scale with the same exponent. This requirement yields a system of algebraic equations for a,
b, and ¢
Balancing the dominant terms gives:

c-b-a=2b-c
1
c—b=E(c-a)

Solving these equations yields the relations:

Sl w

—11)—1
a=1b=7,c=

Construction of Similarity Variables
Using the obtained scaling exponents:
Similarity Variable
Y i
77: ; =yX 1/4
Stream Function

Y=xLm)=x*"*A1n)

Temperature Field
6=6(1)
Physical Interpretation
e  The variable 7=yx"'/*represents the self-similar boundary-layer thickness, which grows
as x'/*in natural convection.
e The exponent 3/4in the stream function ensures correct scaling of velocity components.
e  The temperature becomes a function of nalone, indicating self-similar thermal diffusion.

Final Similarity Transformations results

n=yx V4 y=x*1* 1), 6=6(1)
Substitution yields the coupled nonlinear ODEs:

f S ol .
tA—=+—fF -= (£)?+6=0-------- (ix)
[1+(£)2 4 2
g+ % Prfg=0

with boundary conditions:

£0)=0,£(0)=0,6(0)=1

f(oo)—>0,0(oo)—>0
5. Numerical Method
The boundary-value problem (ix) is solved using a shooting technique combined with
fourth-order Runge—Kutta integration, consistent with MSABC [9]. Missing initial slopes
£ (0)and 6 (0)are iteratively adjusted until asymptotic boundary conditions are satisfied.
6. Numerical Results and Discussion
6.1 Numerical Tables

Table 1: Skin-friction coefficient # (0)for various 1

A £(0)
0.1 0.412
0.3 0.468
0.5 0.529
0.7 0.603
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Table 2: Temperature gradient -6 (0)for Pr=0.7

A -6(0)
0.1 0.221
0.3 0.198
0.5 0.174
0.7 0.151
6.2 Velocity Profiles

Veaelocity Profiles for Powell-Eyring Fluid
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Figure 1: Velocity Profiles for Different Powell-Eyring Parameters (1)

The velocity profiles illustrate the influence of the Powell-Eyring fluid parameter A on
the dimensionless velocity £ (7). It is observed that as A increases, the velocity near the plate
increases significantly. This behavior is attributed to the reduction in effective viscosity caused
by the nonlinear stress—strain relationship of the Powell-Eyring model.

For higher values of A, the momentum boundary layer becomes thicker, indicating enhanced
fluid motion due to non-Newtonian effects. However, at larger values of the similarity variable
n, the velocity decays asymptotically to zero, satisfying the boundary-layer condition. The
variation is most prominent close to the wall, confirming the dominant role of nonlinear
rheology in near-wall transport.

6.3 Temperature Profiles

Temperature Proflles for Pr= 0.7
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Figure 2: Temperature Profiles for Pr = 0.7

Figure 2 displays the temperature distribution 6(n) for a fixed Prandtl number Pr = 0.7
for a range of Powell-Eyring parameter A values. In every scenario, the temperature drops
monotonically as 1 increases, which is a common boundary-layer thermal behaviour.

A narrower thermal boundary layer results from a faster rate of temperature decay
caused by an increase in A. This suggests that heat transfer from the plate to the fluid is
improved by increased non-Newtonian processes. Thermal diffusion away from the surface is
intensified by increased convection brought on by greater velocities..

6.4 Skin-Friction
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Figure 3: Variation of Skin Friction with Powell-Eyring Parameter (1)
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Figure 3 shows how the skin friction coefficient """ """ \"(0)" changes with A. It is evident that
skin friction rises monotonically with increasing A. The nonlinear stress component at the wall
provides more resistance, which is the cause of this behaviour.
An essential factor in polymer processing and coating flows, the higher wall shear stress for
increasing A values validates that Powell-Eyring fluids have stronger surface interaction than
Newtonian fluids.
Conclusion
For the steady laminar natural convection flow of a Powell-Eyring non-Newtonian fluid via a
vertical plate, a thorough similarity analysis has been provided. The governing nonlinear partial
differential equations were effectively reduced to a set of coupled nonlinear ordinary
differential equations by use of a one-parameter Lie scaling group transformation.
The Powell-Eyring fluid parameter has a considerable impact on velocity, temperature
distribution, and skin friction, according to numerical solutions found using a shooting
approach in conjunction with a fourth-order Runge-Kutta scheme. Increasing the Powell-
Eyring parameter improves heat transfer characteristics by increasing fluid velocity and wall
shear stress while also decreasing thermal boundary-layer thickness.
The findings unequivocally show that in complex fluid natural convection processes, non-
Newtonian influences cannot be disregarded. Future analytical, numerical, and experimental
research on viscoinelastic convection flows can benefit from the current analysis's benchmark
numerical data and physically consistent patterns.
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