International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July- December 2019, Submitted in December 2019, iajesm2014@gmail.com

Application Performance Management: State of the Art and
Challenges for The Future

Sri Sharanabasappa Raikoti, Assistant Professor, Department of Computer Science, Government Degree College Yadgir,
Karnataka (India), Email: sr.raikoti@gmail.com

Abstract

In the last decade, several research efforts have been directed to integrating performance
analysis in the software development process. Traditional software development methods
focus on software correctness, introducing performance issues later in the development
process. This approach is not adequate since performance problems may be so severe that
they may require considerable changes in the design, for example at the software architecture
level, or even worse in the requirements analysis. Several approaches have been proposed to
address early software performance analysis. Although some of them have been successfully
applied, there is still a gap to be filled in order to see performance analysis integrated in
ordinary software development. We present a comprehensive review of the recent
developments of software performance research and point out the most promising research
directions in the field.

Keywords: SOFTWARE, PERFORMANCE FEEDBACK, STATE OF THE ART
Introduction:
With the ultimate goal of replacing proprietary hardware appliances with Virtual Network
Functions (VNFs) implemented in software, Network Function Virtualization (NFV) has
been gaining popularity in the past few years. Software switches route traffic between VNFs
and physical Network Interface Cards (NICs). It is of paramount importance to compare the
performance of different switch designs and architectures. In this paper, we propose a
methodology to compare fairly and comprehensively the performance of software switches.
We first explore the design spaces of seven state-of-the-art software switches and then
compare their performance under four representative test scenarios. Each scenario
corresponds to a specific case of routing NFV traffic between NICs and/or VNFs. In our
experiments, we evaluate the throughput and latency between VNFs in two of the most
popular virtualization environments, namely virtual machines (VMs) and containers. Our
experimental results show that no single software switch prevails in all scenarios. It is,
therefore, crucial to choose the most suitable solution for the given use case. At the same
time, the presented results and analysis provide a deeper insight into the design tradeoffs and
identifies potential performance bottlenecks that could inspire new designs.
Williams et al. in [10] introduced the PASA (Performance Assessment of Software
Architectures) approach. It aims at achieving good performance results [8] through a deep
understanding of the architectural features. This is the approach that firstly introduces the
concept of antipatterns as support to the identification of performance problems in software
architectural models as well as in the formulation of architectural alternatives. However, this
approach is based on the interactions between software architects and performance experts,
therefore its level of automation is still low. Cortellessa et al. in [3] introduced a first proposal
of automated generation of feedback from the software performance analysis, where
performance antipatterns play a key role in the detection of performance flaws. However, this
approach considers a restricted set of antipatterns, and it uses informal interpretation matrices
as support. Performance scenarios are described (e.g. the throughput is lower than the user
requirement, and the response time is greater than the user requirement) and, if needed, some
actions to improve such scenarios are outlined. The main limitation of this approach is that
the interpretation of performance results is only demanded to the analysis of Layered Queue
Networks (LQN) [1], i.e. a performance model. Such knowledge is not enriched with the
features coming from the software architectural models, thus to hide feasible refactoring
actions. Enterprise technologies and EJB performance antipatterns are analyzed by Parsons et
al. in [8]: antipatterns are represented as sets of rules loaded into a JESS [2] engine, and
written in a Lisp-like syntax [10]. A rule-based performance diagnosis tool, named
Performance Antipattern Detection (PAD), is presented. However, it deals with
ComponentBased Enterprise Systems, targeting only Enterprise Java Bean (EJB)

4 1A FCEN
-

Volume-12, Issue-l1I 12


mailto:sr.raikoti@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July- December 2019, Submitted in December 2019, iajesm2014@gmail.com
applications. It is based on the monitoring of the data from running systems, it extracts the
run-time system design and detects EJB antipatterns by applying rules to it. Hence, the scope
of [8] is restricted to such domain, and performance problems can neither be detected in other
technology contexts nor in the early development stages. By taking a wider look out of the
performance domain, the management of antipatterns is a quite recent research topic, whereas
there has already been a significant effort in the area of software design patterns. It is out of
scope to address such wide area, but it is worth to mention some approaches dealing with
patterns. Elaasar et al. in [5] introduced a metamodeling approach to pattern specification. In
the context of the OMGs 4-layer metamodeling architecture, the authors propose a pattern
specification language (i.e. Epattern, at the M3 level) used to specify patterns in any MOF-
compliant modeling language at the M2 layer. France et al. in [9] introduced a UML-based
pattern specification technique. Design patterns are defined as models in terms of UML
metamodel concepts: a pattern model describes the participants of a pattern and the relations
between them in a graphical notation by means of roles, i.e. the properties that a UML model
element must have to match the corresponding pattern occurrence.

Business success is directly influenced by the performance of the enterprise application
systems that support it. Any performance issue that may arise during the production use of
such applications may bring losses in revenue, and even cause customers to turn away.
Examples of these losses and their impact are well documented. Google loses 20% traffic if
their web sites respond 500 ms slower [9]. Amazon loses 1% of revenue for every 100 ms in
latency [8]. Mozilla’s study showed that if the page is not loaded within one to five seconds,
users will leave the web site [4]. Application performance management (APM), as a core IT
operations discipline, aims to achieve an adequate level of performance during operations. To
achieve this, APM comprises methods, techniques, and tools for i) continuously monitoring
the state of an applications system and its usage, as well as for ii) detecting, diagnosing, and
resolving performance-related problems using the monitored data. In this paper, we provide a
state-of-the-art overview of the common APM activities (Section 2) and tools (Section 3),
and highlight selected challenges and future directions (Section 4).
ANTIPATTERN-BASED APPROACHES

The term Antipattern appeared for the first time in [3] in contrast to the trend of focus on
positive and constructive solutions. Differently from patterns, antipatterns look at the
negative features of a software system and describe commonly occurring solutions to
problems that generate negative consequences. Antipatterns have been applied in different
domains. For example, in [8] data-flow antipatterns help to discover errors in workflows and
are formalized through the CTL* temporal logic. As another example, in [1] antipatterns help
to discover multi threading problems of Java applications and are specified through the LTL
temporal logic. Performance Antipatterns, as the name suggests, deal with performance issues
of the software systems. They have been previously documented and discussed in different
works: technology-independent performance antipatterns have been defined in [3];
technologyspecific antipatterns have been defined in [5] and [7].

RULE-BASED APPROACHES

Barber et al. in [21] introduced heuristic algorithms that in presence of detected system
bottlenecks provide alternative solutions to remove them. The heuristics are based on
architectural metrics that help to compare different solutions. In a Domain Reference
Architecture (DRA) the modification of functions and data allocation can affect non-
functional properties (for example, performance-related properties such as component
utilization). The tool RARE guides the derivation process by suggesting allocations based on
heuristics driven by static architectural properties. The tool ARCADE extends the RARE
scope by providing dynamic property measures. ARCADE evaluation results subsequently
fed back to RARE can guide additional heuristics that further refine the architecture.
However, it basically identifies and solve only software bottlenecks, more complex problems
are not recognized. Dobrzanski et al. in [1] tackled the problem of refactoring UML models.
In particular, bad smells are defined as structures that suggest possible problems in the
system in terms of functional and non-functional aspects. Refactoring operations are

= M Volume-12, Issue-Il 13



International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July- December 2019, Submitted in December 2019, iajesm2014@gmail.com
suggested in the presence of bad smells. Rules for refactoring are formally defined, and they
take into account the following features: (i) cross integration of structure and behavior; (ii)
support for component-based development via composite structures; and (iii) integration of
action semantics with behavioral constructs. However, no specific performance issue is
analyzed, and refactoring is not driven by unfulfilled requirements. McGregor et al. in [1]
proposed a framework (ArchE) to support the software designers in creating architectures that
meet quality requirements. It embodies knowledge of quality attributes and the relation
between the achievement of quality requirements and architectural design. It helps to create
architectural models by collecting requirements (in form of scenarios) and the information
needed to analyze the quality criteria for the requirements. It additionally provides the
evaluation tools for modifiability or performance analysis. However, the suggestions (or
tactics) are not well explained, and it is not clear at which extent the approach can be applied.
Kavimandan et al. in [8] presented an approach to optimize deployment and configuration
decisions in the context of distributed, realtime, and embedded (DRE) componentbased
systems. Bin packing algorithms have been enhanced, and schedulability analysis have been
used to make fine-grained assignments that indicate how components are allocated to
different middleware containers, since they are known to impact on the system performance
and resource consumption. However, the scope of this approach is limited to deployment and
configuration features. Xu in [8] presented an approach to software performance diagnosis
that identifies performance flaws before the software system implementation. It defines a set
of rules (specified with the Jess rule engine [2]) aimed at detecting patterns of interaction
between resources. The method is applied to UML [2] that employ standard profiles, i.e. the
SPT or Schedulability, Performance and Time profile [4] and its successor MARTE [3].

The software architectural models are translated in a performance model, i.e. Layered
Queueing Networks (LQNSs) [9], and then analyzed. The approach limits the detection to
bottlenecks and long execution paths identified and removed at the level of the LQN
performance model. The actions to solve the performance issues are: change the
configuration, i.e. increase the size of a buffer pool or the amount of existing processors; and
change the design, i.e. increase parallelism and splitting the execution of task in synchronous
and asynchronous parts. The overall approach applies only to LQN models, hence its
portability to other notations is yet to be proven and it may be quite complex
SEARCH-BASED APPROACHES

A wide range of different optimization and search techniques have been introduced in the
field of Search-Based Software Engineering (SBSE) [7], i.e. a software engineering discipline
in which search-based optimization algorithms are used to address problems where a suitable
balance between competing and potentially conflicting goals has to be found. Two key
ingredients are required: (i) the representation of the problem; (ii) the definition of a fitness
function. In fact, SBSE usually applies to problems in which there are numerous candidate
solutions and where there is a fitness function that can guide the search process to locate
reasonably good solutions. A suitable representation of the problem allows to automatically
explore the search space for the solutions that best fit the fitness function [2] that drives
towards the sequence of the refactoring steps to apply to this system (i.e. altering its
architectural structure without altering its semantics). In the software performance domain
both the suitable representation of the problem and the formulation of the fitness function are
not trivial tasks, since the performance analysis results are derived from many uncertainties
like the workload, the operational profile, etc. that might completely modify the perception of
considering candidate solutions as good ones. Some assumptions can be introduced to
simplify the problem and some design options can be explicitly defined in advance to
constitute the population [2] on which search based optimization algorithms apply. However,
we believe that in the performance domain it is of crucial relevance to find a synergy between
the search techniques that involve the definition of a fitness function to automatically capture
what is required from the system, and the antipatterns that might support such function with
the knowledge of bad practices and suggest common solutions, in order to quickly converge
towards performance improvements. In fact, as recently outlined in [1], there is a mutually

= M Volume-12, Issue-Il 14



International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July- December 2019, Submitted in December 2019, iajesm2014@gmail.com
beneficial relationship between SBSE and predictive models. In particular eleven broad areas
of open problems (e.g. balancing functional, nonfunctional properties of predictive models) in
SBSE for predictive modeling are discussed, explaining how techniques emerging from the
SBSE community may find potentially innovative applications in predictive modeling.
DESIGN SPACE EXPLORATION APPROACHES
Zheng et al. in [4] described an approach to find optimal deployment and scheduling
priorities for tasks in a class of distributed real-time systems. In particular, it is intended to
evaluate the deployment of such tasks by applying a heuristic search strategy to LQN models.
However, its scope is restricted to adjust the priorities of tasks competing for a processor, and
the only refactoring action is to change the allocation of tasks to processors. Bondarev et al.
in [5] proposed a design space exploration methodology, i.e. DeSiX (DEsign, Simulate,
eXplore), for software component-based systems. It adopts multidimensional quality attribute
analysis and it is based on (i) various types of models for software components, processing
nodes, memories and bus links, (ii) scenarios of system critical execution, allowing the
designer to focus only on relevant static and dynamic system configurations, (iii) simulation
of tasks automatically reconstructed for each scenario, and (iv) Pareto curves [4] for
identification of optimal architecture alternatives. An evolution of [3] can be found in [2],
where a design space exploration framework for component-based software systems is
presented. It allows an architect to get insight into a space of possible design alternatives with
further evaluation and comparison of these alternatives. However, it requires a manual
definition of design alternatives of software and hardware architectures, and it is meant to
only identify bottlenecks. Ipek et al. in [8] described an approach to automatically explore the
design space for hardware architectures, such as multiprocessors or memory hierarchies. The
multiple design space points are simulated and the results are used to train a neural network.
Such network can be solved quickly for different architecture candidates and delivers
accurate results with a prediction error of less than 5%. However, the approach is limited to
hardware properties, whereas software architectures are more complex, because architectural
models spread on a wide rage of features.

METAHEURISTIC APPROACHES

Canfora et al. in [5] used genetic algorithms for Quality of Service (QoS)-aware service
composition, i.e. to determine a set of concrete services to be bound to the abstract ones in the
workflow of a composite service. However, each basic service is considered as a black-box
element, where performance metrics are fixed to a certain unit (e.g. cost=5, resp.time=10),
and the genetic algorithms search the best solutions by evaluating the composition options.
Hence, no real feedback (in terms of refactoring actions in the software architectural model
such as split a component) is given to the designer, with the exception of pre-defined basic
services. Aleti et al. in [6] presented a framework for the optimization of embedded system
architectures. In particular, it uses the AADL (Architecture Analysis and Description
Language) [7] as the underlying architecture description language and provides plug-in
mechanisms to replace the optimization engine, the quality evaluation algorithms and the
constraints checking. Architectural models are optimized with evolutionary algorithms
considering multiple arbitrary quality criteria. However, the only refactoring action the
framework currently allows is the component re-deployment. Martens et al. in [8] presented
an approach for a performance-oriented design space exploration of component-based
software architectures. An evolution of this work can be found in [9] where meta-heuristic
search techniques are used for improving performance, reliability, and costs of of component-
based software systems. In particular, evolutionary algorithms search the architectural design
space for optimal trade-offs by means of Pareto curves. However, this approach is quite time-
consuming, because it uses random changes (spanning on all feasible solutions) of the
architecture, and the optimality is not guaranteed.

Data Storage and Processing

In order to have a central view on the collected data, it is usually transferred by the agents to
a data storage for further processing and analysis. Proprietary or standard technologies (e.g.,
database management systems) can be and are being used. APM usually results in very large

= M Volume-12, Issue-Il 15



International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July- December 2019, Submitted in December 2019, iajesm2014@gmail.com
data sets that need to be handled efficiently [14]. Two data representations are commonly
used: time series and execution traces. While time series represent summary statistics (e.g.,
counts, percentile, etc.) over time, execution traces [3] provide a detailed representation of the
application-internal control flow that results from individual system requests. From this data,
architectural information, including logical and physical deployments and interactions
(topology), can be extracted.

References

1. Franco-Santos, M., Kennerley, M., Micheli, P., Martinez, V., Mason, S., Marr, B., et al.
(2007). Towards a definition of a business performance measurement system.
International Journal of Operations and Production Management, 27, 784—801.

2. Galbraith, J. R. (1973). Designing complex organizations. Massachusetts:
AddisonWesley Publishing, Reading. Garengo, P. (2009). Performance measurement
system in SMEs taking part to quality award programs. Total Quality Management and
Business Excellence, 20, 91-105.

3. Garengo, P., Biazzo, S., & Bititci, U. S. (2005). Performance measurement systems in
SMEs: A review for a research agenda. International Journal of Management Reviews, 7,
25-47.

4. Kroes, J. R., & Ghosh, S. (2010). Outsourcing congruence with competitive priorities:
Impact on supply chain and firm performance. Journal of Operations Management, 28,
124-143.

5. Kueng, P. (2001). Performance measurement systems in the service sector — The
potential of IT is not yet utilized, internal working paper no. 01-05, Department of
Informatics, University of Fribourg, Rue Faucingy 2, 1700 Fribourg, Switzerland.

6. Leavitt, H. J., & Whistler, T. L. (1958). Management in the 1980s. Harvard Business
Review, 41-48.

7. Marchand, M., & Raymond, L. (2008). Researching performance measurement systems
— An information systems perspective. International Journal of Operations and
Production Management, 28(7), 663—686.

8. Schonberger, R. J. (1982). Japanese manufacturing techniques: Nine hidden lessons in
simplicity. The Free Press Publishers. Shepherd, C., & Gunter, H. (2006). Measuring
supply chain performance: Current research and future directions. International Journal
of Productivity and Performance Management, 55, 242—-258.

9. Skinner, W. (1974). The decline, fall, and renewal of manufacturing. Industrial
Engineering, 32, 38.

10. Wise, R., & Baumgartner, P. (1999). Go downstream: The new profit imperative in
manufacturing. Harvard Business Review, 77, 133-141.

11. Woodruff, R. B. (1997). Customer value: The next source for competitive advantage.
Journal of the Academy of Marketing Science, 25, 139-153.

12. Yamakawa, T., Ahmed, S., Kelston, A. (2009). The BRICs as drivers of global
consumption, Goldman sachs global economics, commodities and strategy research
(06.08.09)

= M Volume-12, Issue-Il 16



